Functions | |
void | Tensors::Mult (Tensor2 const &S, Tensor2 const &T, Tensor2 &R) |
Tensor multiplication . | |
REAL | Tensors::Norm (Tensor2 const &T) |
Euclidian norm of a symmetric 2nd order tensor. | |
REAL | Tensors::Det (Tensor2 const &T) |
Determinant of T. | |
bool | Tensors::Inv (Tensor2 const &T, Tensor2 &R) |
Inverse of a tensor T . | |
bool | Tensors::Eigenvals (Tensor2 const &T, REAL L[3]) |
Eigenvalues (L) of a tensor T . | |
bool | Tensors::Eigenvp (Tensor2 const &T, REAL L[3], Tensor2 P[3]) |
Eigenvalues (L) and Eigenprojectors (P) of a tensor T . | |
bool | Tensors::Sqrt (Tensor2 const &T, Tensor2 &R) |
Square root of a tensor T . | |
void | Tensors::CharInvs (Tensor2 const &T, REAL I[3]) |
Characteristic invariants of a symmetric second order tensor. | |
void | Tensors::Strain_Ev_Ed (Tensor2 const &Eps, REAL &Ev, REAL &Ed) |
Strain Invariants. | |
void | Tensors::Stress_p_q (Tensor2 const &Sig, REAL &p, REAL &q) |
Stress Invariants (Cambridge). | |
REAL | Tensors::Stress_q (Tensor2 const &Sig) |
Cambridge's q deviatoric stress invariant. | |
REAL | Tensors::Sin3ThDev (Tensor2 const &S) |
Sin3Th given deviator (S) of the stress tensor. | |
void | Tensors::Stress_p_q_S_sin3th (Tensor2 const &Sig, REAL &p, REAL &q, Tensor2 &S, REAL &sin3th) |
Stress Invariants (Cambridge) + deviator of Sigma. | |
bool | Tensors::Stress_tn_ts (Tensor2 const &Sig, REAL &tn, REAL &ts) |
Stress Invariants (Professor Nakai's invariants). | |
void | Tensors::Stress_P_Q (Tensor2 const &Sig, REAL &P, REAL &Q) |
Stress Invariants (Professor Brannon's isomorphic invariants). | |
void | Tensors::Stress_P_Q_S_sin3th (Tensor2 const &Sig, REAL &P, REAL &Q, Tensor2 &S, REAL &sin3th) |
Stress Invariants (Professor Brannon's isomorphic invariants) + deviator of Sigma. | |
REAL | Tensors::Sin3Th (REAL SI, REAL SII, REAL SIII) |
Returns Sin3Th, given three principal values, which are not necessary sorted. | |
void | Tensors::Hid2Sig (REAL const &p, REAL const &q, REAL const &th, REAL &Sig1, REAL &Sig2, REAL &Sig3) |
Converts hidrostatic coordinates to sigma (principal) coord (T in radians). | |
void | Tensors::Hid2Sig (REAL const *P, REAL const *Q, REAL const *T, REAL *SI, REAL *SII, REAL *SIII, int Size) |
Converts hidrostatic coordinates to sigma (principal) coord (T in radians). | |
void | Tensors::Hid2Sig_ (REAL const &SX, REAL const &SY, REAL const &p, REAL &SI, REAL &SII, REAL &SIII) |
Converts hidrostatic coordinates (Sx, Sy, Sz) to sigma (principal) coord (T in radians). |
Tensor multiplication .
-*- IMPORTANT -*-
This function is valid only if the result R=S*T would be symmetric, however this is NOT always true, even if S and T are both symmetric !!!
S | In: Left operand |
T | In: Right operand |
R | Out: R=S*T |
Definition at line 233 of file functions.h.
REAL Tensors::Norm | ( | Tensor2 const & | T | ) | [inline] |
Euclidian norm of a symmetric 2nd order tensor.
T | In: Tensor T |
Definition at line 257 of file functions.h.
Inverse of a tensor T .
T | In: Tensor T |
R | Out: R=inv(T) |
Definition at line 269 of file functions.h.
bool Tensors::Eigenvals | ( | Tensor2 const & | T, | |
REAL | L[3] | |||
) | [inline] |
Eigenvalues (L) of a tensor T .
T | In: Tensor T |
L | Out: Eigenvalues of T |
Definition at line 288 of file functions.h.
Eigenvalues (L) and Eigenprojectors (P) of a tensor T .
Any symmetric second order tensor may be calculated according to its Spectral Decomposition:
in which and are the eigenvalues and eigenvectors of tensor , respectively
The eigenprojector is defined according to:
Therefore, the spectral representation can be re-written as:
Or, considering Einstein's summation rule (over index k, from 1 to 3)
The following properties hold for the eigenprojectors, in fact, for any projector (Brannon, 2000),
T | In: Tensor T |
L | Out: Eigenvalues of T |
P | Out: Igenprojectors of T |
Definition at line 297 of file functions.h.
Square root of a tensor T .
T | In: Tensor T |
R | Out: R=sqrt(T) |
Definition at line 335 of file functions.h.
void Tensors::CharInvs | ( | Tensor2 const & | T, | |
REAL | I[3] | |||
) | [inline] |
Characteristic invariants of a symmetric second order tensor.
T | In: Tensor T |
I | Out: Characterist invariants |
Definition at line 357 of file functions.h.
void Tensors::Strain_Ev_Ed | ( | Tensor2 const & | Eps, | |
REAL & | Ev, | |||
REAL & | Ed | |||
) | [inline] |
Strain Invariants.
Eps | In: Strain tensor Epsilon |
Ev | Out: Volumetric strain |
Ed | Out: Deviatoric strain |
Definition at line 365 of file functions.h.
void Tensors::Stress_p_q | ( | Tensor2 const & | Sig, | |
REAL & | p, | |||
REAL & | q | |||
) | [inline] |
Stress Invariants (Cambridge).
Sig | In: Stress tensor |
p | Out: Cambridge mean stress |
q | Out: Cambridge deviatoric stress |
Definition at line 374 of file functions.h.
REAL Tensors::Stress_q | ( | Tensor2 const & | Sig | ) | [inline] |
Cambridge's q deviatoric stress invariant.
Sig | In: Stress tensor |
Definition at line 383 of file functions.h.
REAL Tensors::Sin3ThDev | ( | Tensor2 const & | S | ) | [inline] |
Sin3Th given deviator (S) of the stress tensor.
S | Deviator of the stress tensor |
* * +30 S1 * 0-> | * -30 \ th| th: theta * ', \ | * '. \ | * '.\| * .' -. * .' '. * .' '. * S2 .' '. S3 * *
Definition at line 391 of file functions.h.
void Tensors::Stress_p_q_S_sin3th | ( | Tensor2 const & | Sig, | |
REAL & | p, | |||
REAL & | q, | |||
Tensor2 & | S, | |||
REAL & | sin3th | |||
) | [inline] |
Stress Invariants (Cambridge) + deviator of Sigma.
S | deviator of Sigma |
sin3th | theta3 = theta*3 |
Definition at line 406 of file functions.h.
bool Tensors::Stress_tn_ts | ( | Tensor2 const & | Sig, | |
REAL & | tn, | |||
REAL & | ts | |||
) | [inline] |
Stress Invariants (Professor Nakai's invariants).
Sig | In: Stress tensor |
tn | Out: mean stress invariant |
ts | Out: deviatoric stress invariant |
Definition at line 418 of file functions.h.
void Tensors::Stress_P_Q | ( | Tensor2 const & | Sig, | |
REAL & | P, | |||
REAL & | Q | |||
) | [inline] |
Stress Invariants (Professor Brannon's isomorphic invariants).
Sig | In: Stress tensor |
P | Out: Isomorphic mean stress |
Q | Out: Isomorphic deviatoric stress |
Definition at line 438 of file functions.h.
void Tensors::Stress_P_Q_S_sin3th | ( | Tensor2 const & | Sig, | |
REAL & | P, | |||
REAL & | Q, | |||
Tensor2 & | S, | |||
REAL & | sin3th | |||
) | [inline] |
Stress Invariants (Professor Brannon's isomorphic invariants) + deviator of Sigma.
Sig | In: Stress tensor |
P | Out: Isomorphic mean stress |
Q | Out: Isomorphic deviatoric stress |
S | deviator of Sigma |
Definition at line 447 of file functions.h.