XFree86 4.x has a single X server binary called XFree86
. This
binary can either have one or more video and input drivers linked in
statically, or more usually, dynamically, and in that manner load the
video drivers, input drivers, and other modules that are needed.
XFree86 4.6.0 has X server support for most UNIX® and UNIX-like operating systems on Intel/x86 platforms, plus support for Linux and some BSD OSs on Alpha, PowerPC, IA-64, AMD64, SPARC, and Mips platforms, and for Darwin on PowerPC. Support for additional architectures and operating systems is in progress and is planned for future releases.
The XFree86 X server has a built-in run-time loader, which can load normal object files and libraries in most of the commonly used formats. The loader does not rely on an operating system's native dynamic loader support and it works on platforms that do not provide this feature. This allows for the modules to be operating system independent (although not, of course, CPU architecture independent) which means that a module compiled on Linux/x86 can be loaded by an X server running on Solaris/x86, or FreeBSD, or even OS/2.
The X server makes use of modules for video drivers, X server extensions, font rasterisers, input device drivers, framebuffer layers (like mfb, cfb, etc), and internal components used by some drivers (like XAA),
The module interfaces (both API and ABI) used in this release are subject to change without notice. While we will attempt to provide backward compatibility for the module interfaces as of the 4.0 release (meaning that 4.0 modules will work with future core X server binaries), we cannot guarantee this. Compatibility in the other direction is explicitly not guaranteed because new modules may rely on interfaces added in new releases.
Note about module security
The XFree86 X server runs with root privileges, i.e. the X server loadable modules also run with these privileges. For this reason we recommend that all users be careful to only use loadable modules from reliable sources, otherwise the introduction of viruses and contaminated code can occur and wreak havoc on your system. We hope to have a mechanism for signing/verifying the modules that we provide available in a future release.
The XFree86 server uses a configuration file as the primary mechanism for providing configuration and run-time parameters. The configuration file format is described in detail in the XF86Config(5) manual page.
The XFree86 server has support for automatically determining an initial configuration on most platforms, as well as support or generating a basic initial configuration file.
Command line options can be used to override some default parameters and parameters provided in the configuration file. These command line options are described in the XFree86(1) manual page.
The XFree86 Acceleration Architecture (XAA) was completely rewritten from scratch for XFree86 4.x. Most drivers implement acceleration by making use of the XAA module.
Some multi-head configurations are supported in XFree86 4.x, primarily with multiple PCI/AGP cards.
One of the main problems is with drivers not sufficiently initialising cards that were not initialised at boot time. This has been improved somewhat with the INT10 support that is used by most drivers (which allows secondary card to be "soft-booted", but in some cases there are other issues that still need to be resolved. Some combinations can be made to work better by changing which card is the primary card (either by using a different PCI slot, or by changing the system BIOS's preference for the primary card).
Xinerama is an X server extension that allows multiple physical screens to behave as a single screen. With traditional multi-head in X11, windows cannot span or cross physical screens. Xinerama removes this limitation. Xinerama does, however, require that the physical screens all have the same root depth, so it isn't possible, for example, to use an 8-bit screen together with a 16-bit screen in Xinerama mode.
Xinerama is not enabled by default, and can be enabled with the
+xinerama
command line option for the X server.
Xinerama was included with X11R6.4. The version included in XFree86 4.x was completely rewritten for improved performance and correctness.
Known problems:
DGA 2.0 is included in 4.6.0. Documentation for the client libraries can be found in the XDGA(3) man page. A good degree of backwards compatibility with version 1.0 is provided.
The VESA® Display Data Channel (DDC[tm]) standard allows the monitor to tell the video card (or on some cases the computer directly) about itself; particularly the supported screen resolutions and refresh rates.
Partial or complete DDC support is available in most of the video drivers.
DDC is enabled by default, but can be disabled with a "Device" section
entry: Option "NoDDC"
. We have support for DDC versions 1
and 2; these can be disabled independently with Option "NoDDC1"
and Option "NoDDC2"
.
At startup the server prints out DDC information from the display, and will use this information to set the default monitor parameters and video mode when none are provided explicitly in the configuration file.
Several drivers uses DDC information to
set the screen size and pitch. This can be overridden by explicitly
resetting it to the and non-DDC default value 75 with the -dpi
75
command line option for the X server, or by specifying appropriate
screen dimensions with the "DisplaySize" keyword in the "Monitor" section
of the config file.
Direct rendered OpenGL® support is provided for several hardware platforms by the Direct Rendering Infrastructure (DRI), which is part of Mesa. Mesa also provides the 3D core rendering component of GLX. Further information can be found at the DRI Project's web site and the Mesa web site.
The XVideo extension is supported in XFree86 4.x. An XvQueryPortAttributes function has been added as well as support for XvImages. XvImages are XImages in alternate color spaces such as YUV and can be passed to the server through shared memory segments. This allows clients to display YUV data with high quality hardware scaling and filtering.
The X Rendering extension provides a 2D rendering model that more closely matches application demands and hardware capabilities. It provides a rendering model derived from Plan 9 based on Porter/Duff image composition rather than binary raster operations.
Using simple compositing operators provided by most hardware, Render can draw anti-aliased text and geometric objects as well as perform translucent image overlays and other image operations not possible with the core X rendering system.
XFree86 4.6.0 provides a partial implementation of Render sufficient for drawing anti-aliased text and image composition. Still to be implemented are geometric primitives and affine transformation of images.
Unlike the core protocol, Render provides no font support for applications, rather it allows applications to upload glyphs for display on the screen. This allows the client greater control over text rendering and complete access to the available font information while still providing hardware acceleration. The Xft library provides font access for Render applications.
On the client side, the Xft library provides access to fonts for
applications using the FreeType library, version 2. FreeType currently
supports Type1 and TrueType font files, a future release is expected to
support BDF and PCF files as well, so Render applications will have access
to the complete range of fonts available to core applications. One
important thing to note is that Xft uses the vertical size of the monitor
to compute accurate pixel sizes for provided point sizes; if your monitor
doesn't provide accurate information via DDC, you may want to add that
information to XF86Config
.
To allow a graceful transition for applications moving from core text rendering to the Render extension, Xft can use either core fonts or FreeType and the Render extension for text. By default, Xft is configured to support both core fonts and FreeType fonts using the supplied version of FreeType 2. See the section on FreeType support in Xft for instructions on configuring XFree86 to use an existing FreeType installation.
The Xft library uses a configuration file, XftConfig
, which
contains information about which directories contain font files and also
provides a sophisticated font aliasing mechanism. Documentation for that
file is included in the Xft(3) man page.
XFree86 4.6.0 includes sources for FreeType version 2.1.8, and, by default, it is built and installed automatically.
Only three applications have been modified in this release to work with the Render extension and the Xft and FreeType libraries to provide anti-aliased text. Xterm, xditview and x11perf. Migration of other applications may occur in future releases.
By default, xterm uses core fonts through the standard core API. It has a command line option and associated resource to direct it to use Xft instead:
-fa
family / .VT100.faceName:
family. Selects the
font family to use.Xditview will use Xft instead of the core API by default. X11perf includes tests to measure the performance of text rendered in three ways, anti-aliased, anti-aliased with sub-pixel sampling and regular chunky text, but through the Render extension, a path which is currently somewhat slower than core text.
The XFree86-Misc extension has not been fully ported to the new server architecture yet. This might be completed in a future release.
The XFree86-VidModeExtension extension has been updated, and mostly ported
to the new server architecture. The area of mode validation needs further
work, and the extension should be used with care. This extension has
support for changing the gamma setting at run-time, for modes where this
is possible. The xgamma
utility makes use of this feature.
Compatibility with the 3.3.x version of the extension is provided.
The missing parts of this extension and some new features should be
completed in a future release.
Xedit has several new features, including:
xedit(1)
for more details.Details about the font support in XFree86 4.x can be found in the README.fonts document.
The XFree86 4.x server comes with a TrueType backend, known as the "FreeType" backend, based on the FreeType library. The functionality of the former X-TrueType was merged into the FreeType backend by the After X-TT Project for the XFree86 4.4.0 release, and the old X-TrueType backend has been dropped as of XFree86 4.5.0.
Support for CID-keyed fonts is included in XFree86 4.x. The CID-keyed font format was designed by Adobe Systems for fonts with large character sets. The CID-keyed font support in XFree86 was donated by SGI. See the LICENSE document for a copy of the CID Font Code Public License.
XFree86 4.x has a ``fontenc'' layer to allow the scalable font backends to use a common method of font re-encoding. This re-encoding makes it possible to use fonts in encodings other than their their native encoding. This layer is used by the FreeType, Type1 and Speedo backends.
The glyph metrics array, which all the X clients using a particular font have access to, is placed in shared memory, so as to reduce redundant memory consumption. For non-local clients, the glyph metrics array is transmitted in a compressed format.
What is included in 4.x:
-u8
option).
A more flexible Compose file processing system was added to Xlib in XFree86 4.4.0. The compose file is searched for in the following order:
.XCompose
", it
is used as the Compose file.
/
<localename>/Compose
".
Compose files can now use an "include" instruction. This allows local modifications to be made to existing compose files without including all of the content directly. For example, the system's iso8859-1 compose file can be included with a line like this:
include "/usr/X11R6/lib/X11/locale/iso8859-1/Compose"
There are two substitutions that can be made in the file name of the
include instruction. %H expands to the user's home directory
(the $HOME environment variable), and %L expands to the
name of the locale specific Compose file (i.e.,
"<xlocaledir>/
<localename>/Compose
").
For example, you can include in your compose file the default Compose file by using:
include "%L"
and then rewrite only the few rules that you need to change. New compose rules can be added, and previous ones replaced.
Finally, it is no longer necessary to specify in the right part of a rule a locale encoded string in addition to the keysym name. If the string is omitted, Xlib figures it out from the keysym according to the current locale. I.e., if a rule looks like:
<dead_grave> <A> : "\300" Agrave
the result of the composition is always the letter with the "\300" code. But if the rule is:
<dead_grave> <A> : Agrave
the result depends on how Agrave is mapped in the current locale.
XFree86 includes the ``Luxi'' family of Type 1 fonts and TrueType fonts. This family consists of the fonts ``Luxi Serif'', ``Luxi Sans'' and ``Luxi Mono'' in Roman, oblique, bold and bold oblique variants. The TrueType version have glyphs covering the basic ASCII Unicode range, the Latin 1 range, as well as the Extended Latin range and some additional punctuation characters. In particular, these fonts include all the glyphs needed for ISO 8859 parts 1, 2, 3, 4, 9, 13 and 15, as well as all the glyphs in the Adobe Standard encoding and the Windows 3.1 character set.
The glyph coverage of the Type 1 versions is somewhat reduced, and only covers ISO 8859 parts 1, 2 and 15 as well as the Adobe Standard encoding.
The Luxi fonts are original designs by Kris Holmes and Charles Bigelow from Bigelow and Holmes Inc., who developed the Luxi typeface designs in Ikarus digital format. URW++ Design and Development GmbH converted the Ikarus format fonts to TrueType and Type 1 font programs and implemented the grid-fitting "hints" and kerning tables in the Luxi fonts.
The license terms for the Luxi fonts are included in the file
`COPYRIGHT.BH
', as well as in the License document. For further information,
please contact
[email protected]
or
[email protected]
, or consult the
URW++ web site.