
An Adaptive, Distributed Airborne Tracking

System

(\Process the Right Tracks at the Right Time")

Raymond Clark1, E. Douglas Jensen1, Arkady Kanevsky1, John Maurer1, Paul
Wallace1, Thomas Wheeler1, Yun Zhang1, Douglas Wells2, Tom Lawrence3,

and Pat Hurley3

1 The MITRE Corporation, Bedford, MA, USA
rkc@mitre.org

2 The Open Group Research Institute, Woburn, MA, USA
d.wells@opengroup.org

3 Air Force Research Laboratory/IFGA, Rome, NY 13441, USA
hurleyp@rl.af.mil

Abstract. This paper describes a United States Air Force Advanced
Technology Demonstration (ATD) that applied value-based scheduling
to produce an adaptive, distributed tracking component appropriate for
consideration by the Airborne Warning and Control System (AWACS)
program. This tracker was designed to evaluate application-speci�c Qual-
ity of Service (QoS) metrics to quantify its tracking services in a dynamic
environment and to derive scheduling parameters directly from these QoS
metrics to control tracker behavior. The prototype tracker was imple-
mented on the MK7 operating system, which provided native value-based
processor scheduling and a distributed thread programming abstraction.
The prototype updates all of the tracked-object records when the system
is not overloaded, and gracefully degrades when it is. The prototype has
performed extremely well during demonstrations to AWACS operators
and tracking system designers. Quantitative results are presented.

1 Introduction

Many currently deployed computer systems are insu�ciently adaptive for the
dynamic environments in which they operate. For instance, the AWACS Airborne
Operational Control Program (AOCP), which includes the tracking system, has
a speci�ed maximum track-processing capacity. Since the tracker processes data
in FIFO order, it fails to process later data if its processing capacity is exceeded.
Since sensor reports generally come in the same order from one sweep to the
next, it is likely that, under overload, sensor reports from a speci�c region will
not be processed for several consecutive sweeps. This overload behavior can
result in entire regions of the operator displays that do not get updated. This is
a potentially serious problem because there is no inherent correlation between
important regions of the sky and the arrival order of sensor reports.

This situation, while undesirable, is handled by skilled operators, who rec-
ognize that some data is not being processed and take remedial actions (e.g.,
reducing the gain of a sensor or designating portions of the sky that do not need
to be processed). While these manual adaptations reduce the tracker workload,
they are not ideal. Reducing sensor gain might cause smaller, threatening objects
to go undetected.

Injecting more intelligence into the tracker could avoid such compromises.
The US Air Force Research Laboratory at Rome (NY), The MITRE Corpo-
ration, and The Open Group Research Institute undertook a joint project to
explore that approach. The project recently concluded after producing an Ad-
vanced Technology Demonstration (ATD) featuring a notional, adaptive AWACS
tracker that can execute in a distributed con�guration, with attendant scalability
and fault tolerance bene�ts.

The ATD tracker \processes the right tracks at the right time" by appro-
priately managing the resources needed for track processing. The prototype up-
dates all tracked-object records when it has su�cient resources, and gracefully
degrades otherwise. A single underlying mechanism automatically provides this
degradation, despite its manifestation as a succession of qualitative operational
changes: First, more important tracks receive better service than less important
tracks while all tracks continue to be maintained. Under severe, sustained, re-
source shortages, less important tracks are lost before more important tracks.
(This is referred to as dropping tracks and is described more formally in Sec-
tion 4.2.) Moreover, the tracker automatically delivers improved service when-
ever more resources become available|in essence, tracker performance gracefully
degrades and gracefully improves without direct human intervention.

2 Adaptivity, Value-Based Scheduling, and Quality of

Service

Military planners have observed that \you never
y the same mission twice,"
implying that
exibility and evolvability are important design characteristics.
With that in mind, we employed a relatively straightforward approach to adap-
tivity for this project|decomposing an application (or a set of applications)
into component computations, which are then assigned application-speci�c val-
ues re
ecting their individual contributions to the overall mission. By scheduling
computations to maximize the accrued application-speci�c value, the overall sys-
tem can perform a given mission well.

In some cases, associating a value with a computation seems natural. For
instance, in �nancial trading applications, the value of performing a computa-
tion might be a function of the market price and the production cost. More
complex situations involve other factors, such as human safety, or deal with a
non-monetary domain. The adaptive tracker described here deals with a do-
main that has not traditionally employed a monetary model, providing a worked
example for such a domain.

This project selected a research operating system that provides a value-based
scheduling policy to applications. This makes the mapping from the computation
values to scheduling attributes trivial. On other operating systems, this mapping
would typically translate the application-speci�c values into scheduling priori-
ties, which have a much more restricted value domain. The mapping could be
performed by either the application directly or by a middleware package.

While application decomposition with appropriate value assignments assists
in e�ectively accomplishing a speci�ed mission, application e�ectiveness could be
further increased by employing feedback to directly drive its behavior. To do this,
application-speci�c �gures of merit (that we refer to as Quality-of-Service (QoS)
metrics) are speci�ed at design-time, and evaluated or estimated dynamically
at run-time in order to monitor|and subsequently control|overall application
operation. Section 4 discusses this in some depth for the AWACS ATD, where
the adaptive tracker uses feedback based on QoS metrics for individual tracks
to determine the allocation of processing resources for current track processing.

3 The Tracking Problem

Surveillance radar systems are an important class of real-time systems that have
both civilian and military uses. These systems consist of components for sensor
processing, tracking, and display. In this study we concentrated on the tracking
component, which receives sensor reports|the output produced by the sensor-
processing component|and uses them to detect objects and their movements
[1]. Each object is typically represented by a track record, and the collection of
all track records is commonly referred to as the track �le. Sensor reports arrive
at a tracker periodically, and each report describes a potential airborne object.
The number of sensor reports can vary from radar sweep to radar sweep, and
some sensor reports represent noise or clutter rather than planes or missiles.
When new sensor reports arrive, a tracker correlates the information contained
in the sensor reports with the current estimated track state to update the track
records that represent the tracking system's estimate of the state of the airspace.

A typical tracker comprises gating, clustering, data association, and predic-

tion and smoothing stages. Gating and clustering splits (gates) the problem
data into mutually exclusive, collectively exhaustive subsets of sensor reports
and track records, called clusters. Data association then matches the cluster's
sensor reports with its track records. The �nal stage of a tracker|prediction
and smoothing|computes the next position, velocity and other parameters for
each object using its track history and the results of data association.

3.1 Tracking Software for the ATD

Advanced Technology Demonstrations are intended to transfer technology into
an application setting so that it can be utilized and evaluated by the operational
and acquisition communities. In order to focus on this transfer, the project used

existing tracking software and terminology, ensuring that ATD evaluators would
be familiar with the overall function and structure of the tracker.

The project adapted a tracker that processed information from multiple sen-
sors, including multiple types of radar. That tracker performed a single-threaded
computation: That is, a single thread in the tracker performed all of the tracking
stages described above from receiving sensor reports to updating the track �le.

3.2 Adaptive Tracking

The motivating problem was the (mis)behavior of the tracker under overload,
which can be intentionally caused by an enemy. Since, under overload, all of the
incoming data cannot be processed, the project's goal was to allow the tracker to
do a better job of selecting a subset of incoming data that could feasibly be pro-
cessed by allowing scheduling decisions that had previously been made at design
time to be deferred until run time. There were two major changes: processing
was divided into smaller-grained units of work that could be scheduled inde-
pendently and concurrently; and value-based design principles were employed to
determine appropriate scheduling parameters for those individual work units.

Multithreading and Concurrency Presumably, a single-threaded adaptive
tracker could be constructed by properly ordering the association computations
so that those that are most critical are attempted �rst. While that approach
addresses the overload problem at hand, it su�ers from the serious limitations
described below, motivating us to design a multithreaded AWACS ATD tracker
that utilizes a separate thread for each association computation to be performed.

First, a single-threaded tracker could not take advantage of available dis-
tributed resources, including both multiprocessors and other processing nodes.

Secondly, ordering the association computations in the application reduces
or eliminates the possibility of taking advantage of certain operating system and
middleware resource management facilities. For instance, the OS employed for
the AWACS ATD o�ered a processor-scheduling policy that accepted explicit
application time constraints for computations and performed the set of compu-
tations that maximized accrued value (in application-speci�c terms).

Application of Value-Based Design Principles Given the multithreaded
design described above, with a separate thread assigned to perform each asso-
ciation computation, and an underlying scheduler that attempts to maximize
accrued value, the adaptive tracker design problem is reduced to a straightfor-
ward question: Can scheduling parameters be selected for tracks and clusters
that re
ect the value associated with their processing?

Considerable e�ort was devoted to answering that question for the ATD.
Fortunately, at about this time, the tracking community was independently en-
couraged to think in terms of \selling" track information to customers|that is,
operators and decision makers. That point of view helped make the notion of
establishing the application-speci�c value of a track quite natural. In fact, the

project developed a set of QoS metrics for individual tracks. These per-track QoS
metrics, described in Section 4.2, directly determine the scheduling parameters
for a cluster, which, in turn, a�ect the future QoS metrics of each component
track.

4 Value-Based Design

AWACS can perform a number of di�erent missions: e.g., it can manage logistics
such as refueling, perform air-tra�c control, or carry out general surveillance.
In order to maximize the depth of this initial work, we applied the principles of
value-based design to a single mission. Because of its general utility and intuitive
simplicity, a surveillance mission was chosen for the ATD.

When
ying a surveillance mission, AWACS operators attempt to monitor all
airborne objects in a large region. Once an object has been identi�ed, the tracker
follows its progress (i.e., \track" it). The more closely the tracker's estimate of
an object's position and heading agree with reality, the better.

Moreover, once the tracker has identi�ed a track, it should not \drop" it
erroneously. A track is dropped if it is not updated for a number of input sensor
cycles. While this is inevitable if no new sensor input is received for the track,
the project focused on cases where sensor input is received, but is not processed.
(A dropped track can be rediscovered; but this is a relatively costly operation
and there is no assurance that any individual track will be reacquired.)

4.1 Adaptive Tracker Behaviors

A key step to producing an adaptive tracker was to develop a speci�cation of its
desired behavior|in particular, its behavior under overload. This is an appli-
cation speci�cation task, but was of interest to the project because it required
speci�cation of behaviors that were new to the application domain.

The speci�cation of adaptive tracker behaviors occurred in two phases. The
�rst phase described a high-level policy, but did not address tradeo�s that could
arise when attempting to satisfy con
icting policy objectives. For example, the
high-level adaptive tracker should preferentially process tracks that:

{ are in danger of being dropped

{ the user has identi�ed as \important"

{ have poor state (position and velocity) estimates

{ are maneuvering

{ potentially pose a high threat

{ are moving at high speed

The second phase re�ned this high-level policy by addressing con
icting pol-
icy objectives. In general, project members could identify these con
icts, but
needed expert assistance to determine the proper resolutions (i.e., tradeo�s).

4.2 QoS Metrics for Tracks

Policy re�nement required the de�nition of QoS metrics. Where the high-level
policy could usefully describe behaviors for more and less important tracks, or
make a distinction between more and less accurate track positions, the imple-
mentation of that policy required precise speci�cation of these terms.

There are a number of traditional metrics for tracker performance. Many of
these do not address the central issues of the ATD. For example, the ability
of the tracker to follow aircraft through maneuvers, while obviously a valuable
capability, is primarily a function of factors such as a sensor's probability of
detection, the sensor's revisit rate, and the association algorithm employed. The
�rst two factors were out of our scope, and we have not yet implemented the
dynamic selection of an association algorithm based on QoS metrics. Rather, the
ATD focused on the decision of when to execute instances of known algorithms.

The project settled on three QoS metrics that could quantify track processing:

{ Timeliness: the total elapsed time between the arrival of a sensor report and
the update of the corresponding track �le record.

{ Track quality (TQ): a traditional measure of the amount of recent sensor data
incorporated in the current track record. TQ is incremented or decremented
after each scan and ranges between zero (lowest quality) and seven (highest
quality). If TQ falls to zero, the track is dropped.

{ Track accuracy: a measure of the uncertainty of the estimate of the track's
position and velocity.

In addition to these QoS metrics, each track was dynamically assigned to one
of two importance classes. A track could be deemed more important for a number
of reasons, including designation by an operator,
ying in an operator-designated
region, or posing a signi�cant threat to the AWACS platform.

For the sake of intellectual manageability and to simplify the task of produc-
ing the �rst prototype adaptive tracker, the QoS metrics and the track impor-
tance designation were coalesced into a small number of classes. As mentioned
above, there were two track importance classes; in addition, there are three track
quality classes and two track accuracy classes. (AWACS operators subsequently
validated this level of granularity.)

4.3 Quanti�ed Adaptations

Based on these classes, project members re�ned the high-level adaptive tracking
policy by focusing on speci�c tradeo�s involving pairs of track QoS metrics or
track importance. For instance, one ranking considered only the track importance
and track quality of competing clusters. Several such pair-wise rankings were
merged to form a total ordering of the cases (with numeric values) as a function
of track quality, track accuracy, and track importance.

At that point, tracking experts helped quantify the relative values of the bins.
We also examined several cluster scenarios \by hand" to assign overall values

High/Low
Importance

Track Accuracy
High Low

Track
Quality

High
(5-7)

Medium
(3-4)

Low
(1-2)

10

53

30

700

910

5500

20

65

40

800

1000

6000

Fig. 1. Track Values as a Function of
Track Quality-of-Service Metrics

Time

Value

Fig. 2. Shape of Time-Value Functions
for Association Computations

and perform �ne tuning. Figure 1 shows the set of valuations (\bins") that were
employed for our demonstrations, which are described brie
y in Section 7.

Once the bins had been assigned values, the translation to scheduling pa-
rameters was straightforward. The underlying operating system|The Open
Group Research Institute's MK7|provides a value-based scheduler that accepts
time constraints for speci�c computations. Each time constraint describes the
application-speci�c value (in this case, the bin value of the cluster) of completing
the designated computation as a function of time. For association computations,
all of the time constraints had a similar shape (see Figure 2), which speci�ed
that \sooner was better than later."

5 Additional Design Bene�ts

Although scheduling and overload behavior were important aspects of the tracker
design, there were other key issues as well.

Scalability|The relatively high computational cost of association process-
ing justi�es the investigation of distributed solutions, which seem particularly
feasible since each association operates on a limited amount of data (a cluster's
sensor reports and track �le records) that can be easily assembled during gating
and clustering. Consequently, not only is the ATD tracker multithreaded, but
the association algorithms have been extracted and encapsulated in a separate
object class. Association object instances (called associators) can|and have|
been run on other nodes in a distributed tracking system. Moreover, there is
provision in the tracker to select an associator on a cluster-by-cluster basis. This
structure lays the groundwork for a scalable distributed tracker, where addi-
tional associators can be placed on newly added nodes for immediate use by the
tracker.

Fault Tolerance | The distributed structure outlined above supports a
straightforward form of fault tolerance. The tracker can clearly survive the fail-
ure of individual associators|as long as at least one associator survives. When
associators fail, reducing system capacity, the basic adaptive, QoS-driven nature
of the system results in the selection of a reasonable subset of work to perform.

6 OS Support for the ATD Prototype Implementation

The adaptive ATD tracker builds on several features of the underlying operating
system, The Open Group Research Institute's MK7 [6][7], which provides a num-
ber of standards-based facilities as well as a set of unique capabilities designed
to support distributed, real-time applications.

Beyond traditional real-time support (e.g., predictable execution times, pre-
emption, priority scheduling, instrumentation, and low interrupt latency), MK7
provides a number of advanced features. The MK7 microkernel, which has been
explicitly developed to support real-time applications, contains a scheduling
framework that simultaneously supports priority-based and time-based schedul-
ing policies. A value-based processor-scheduling policy called Best-E�ort schedul-
ing [4][7], which accepts application (and system) time constraints and schedules
computations according to a heuristic that attempts to maximize total accrued
value, was particularly useful for the ATD. Notably, this value-based scheduling
policy and the threads it schedules co-exist with and interact with other parts
of the OS and application, including synchronizers, preemptions, and \priority"
modi�cations (e.g., priority inheritances and priority depressions).

MK7 threads are distributed (or migrating) threads[2][3], which move among
the processes (i.e., MK tasks) of a distributed system by executing RPCs while
carrying an environment that includes information like the thread's scheduling
parameters, identity, and security credentials.

MK7 provides several standard interfaces|including a highly standards-
compliant UNIX interface and the X Window System|that permit application
programmers to reuse existing code. Both distributed threads and value-based
scheduling are managed by an extended POSIX threads library. The extensions,
while providing access to powerful facilities, are few in number and are gener-
alizations of existing POSIX thread functions (e.g., through extensions of the
POSIX thread cancellation interfaces)|thus simplifying the programmer's task
considerably.

7 Prototype Results

The prototype performed extremely well during demonstrations to its target
audience|AWACS operators and tracking system designers|most notably at
the Boeing AWACS Prototype Demonstration Facility. Under \normal" (non-
overload) conditions, the tracker handled all tracks as expected and delivered
high QoS for all tracks. Overload conditions were simulated by arti�cially tight-
ening the deadlines for the completion of association processing.

Figure 3 shows results of the tracker for a typical overload scenario. Batches
of between ten and 14 sensor reports arrived at the tracker, with one-third of the
tracks belonging to the more-important track class. The Association Capacity
axis indicates the number of associations the tracker could usually perform in the
speci�ed processing time limit, and the Track Quality axis indicates the average
TQ delivered for each track-importance class.

 >11 10 9 8 7 6 5 4 3 2 1
Association Capacity

0

1

2

3

4

5

6

7

Track

Quality
more important
tracks

less important
tracks

Fig. 3. Average Track Quality as a Function of Association Capacity

Figure 3 indicates that when the tracker can only process about 33% of
the input, the prototype delivered essentially perfect TQ for the more important
tracks, while delivering a reasonable (about 4.5) TQ for the less important tracks.
(In some respects, this overload level can be likened to a system where the
probability of detecting an airborne object is about 33%.) When the tracker was
further constrained so that it could only process about 10% of the input, the
prototype �nally dropped some tracks|from the less important track class. No
important tracks have been dropped during our demonstrations.

In addition, the demonstrations have shown that the tracker also adapts when
new resources are added. In that case, which we demonstrate by loosening the
time constraints on association processing, the prototype automatically delivers
approximately the maximum achievable QoS.

Note that these results are not easily obtainable with static-priority track-
ing systems. In priority-based trackers, track priorities might reasonably be set
according to track importance, where high importance implies high priority. In
the prototype tracker, scheduling decisions are based on both importance and
timeliness, and even relatively unimportant tracks can have very high appli-
cation values in a surveillance mission|a situation that would not arise with
straightforward priority-based scheduling.

8 Summary

The AWACS ATD project produced an adaptive, distributed tracker that was
directly driven by Quality-of-Service metrics. Based on a novel design and in-
corporating knowledge from experts in the �eld, this tracker gracefully handles
overloads, addressing a problem with currently deployed trackers and with track-
ers under development. The tracker was demonstrated to AWACS operators and
tracker designers at Boeing in September 1998 and received supportive feedback,
particularly regarding its behavior under overload and the operator interface.

This project and its demonstration provide another worked example in the
area of value-based scheduling and further encourage our con�dence in this tech-
nology. In addition, the derivation of the QoS metrics for tracks provided valuable
insight into the nature and use of application-speci�c QoS metrics in a new ap-
plication domain. Finally, the project produced a prototype tracker that can be
used for further experimentation and can host future extensions, as well as be
examined by tracker designers and implementers.

There are a number of open questions that should be addressed in the future.
In this project, the value represented by a cluster of tracks and sensor reports
was calculated by adding the values corresponding to each individual track in
the cluster. While this is simple, has intuitive appeal, and produced good results
in our tests, it might not be the best way to determine the value represented by a
cluster. Moreover, there were several capabilities that were included in our design
that have not yet been implemented|most notably the dynamic selection of an
association algorithm for a cluster based on factors such as the amount of clutter,
the number of maneuvering tracks, the computational cost of the algorithm, and
the currently available processing resources. Also, AWACS program personnel
have speculated that the overload adaptations in the ATD tracker could help
manage the dramatically increased processing load associated with (next gener-
ation) multiple hypothesis trackers [5]. This seems credible and could broaden
our expertise in the use of value-based scheduling in a new dimension|that is,
the speci�cation, in application-speci�c terms, of the bene�t of evaluating each
of the potentially large number of hypotheses associated with each track in the
system. Finally, the tracker was designed to be able to perform di�erent missions
and to interact with other AWACS applications. Neither of these capabilities has
been tested to date: The tracker has only performed a surveillance mission, and
no other applications have been added. Exploring both of these areas should be
fruitful, providing, among other things, an opportunity to explore hierarchical,
value-based scheduling architectures.

References

1. Blackman, S.: Multiple-Target Tracking with Radar Applications. Artrech House,
ISBN 0-89006-179-3 (1986)

2. Clark, R.K., Jensen, E.D., Reynolds, F.D.: An Architectural Overview of the Alpha
Real-Time Distributed Kernel. Proc. of the USENIX Workshop on Micro-kernels
and Other Kernel Architectures (1992) 127-146

3. Ford, B., Lepreau, J.: Evolving Mach 3.0 to a Migrating Thread Model. Proc. of
the USENIX Winter 1994 Technical Conference (1994)

4. Locke, C.D.: Best-E�ort Decision Making for Real-Time Scheduling. Ph.D. Thesis,
Dept. of Electrical and Computer Engineering, Carnegie-Mellon University (1986)

5. Reid, D.B.: An Algorithm for Tracking Multiple Targets. IEEE Transactions on
Automatic Control, Vol. AC-24 (1979) 843-854

6. Wells, D.: A Trusted, Scalable, Real-Time Operating System Environment. Dual-
Use Technologies and Applications Conference Proceedings (1994) II:262-270

7. |: MK7.3 Release Notes. The Open Group Research Institute, Cambridge, MA
(1997)

