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Abstract1

We consider a real-time, distributed service to be de-
pendable if it continues to have timely, predictable behav-
ior even in the presence of partial failures. Services with
this property are desirable in a host of real-time scenarios,
including factory floor automation, medical monitoring
equipment, and combat systems.

Most distributed services built with contemporary
fault-tolerance toolkits are not dependable; they exhibit un-
predictable, albeit logically correct, behavioral patterns
under failure conditions.

We have designed and implemented middleware ex-
plicitly for real-time dependable services. We aimed at
maintaining sub-second worst-case guarantees for failure
detection and recovery, even when failures conspire with
network load and CPU load to undermine determinism. The
paper reports our experience in marrying software fault
tolerance and real-time disciplines, from the definition of
the requirements to the characterization of the resulting
system.

1.   Introduction

From futuristic avionics to our own homes, there is a
growing demand for distributed services with real-time
properties, such as predictability and responsiveness. As
failures are intrinsic in distributed services, these real-time
properties must be preserved despite partial failures such as
host crashes and link failures (e.g., a distributed service that
must react to an attack that has already inflicted damage).
In this case, we describe the services as real-time depend-
able distributed services (RDDSs).

1.  This research was supported in part by the Defense Advanced Re-
search Projects Agency (DARPA) and the Rome Laboratory of the Air
Force Materiel Command (AFMC).

Building an RDDS is a challenging proposition. Previ-
ous work [3][26] [21][16][17] in the area of fault manage-
ment and fault tolerance has shown the practicality of
investing in “middleware” layers; within these layers, com-
plex failure scenarios are transformed into simpler failure
semantics, which benefit applications by allowing them to
concentrate on their context-sensitive reactions to failures.
This same work has demonstrated that middleware layers
where real-time is an afterthought fall short in providing
real-time guarantees for RDDSs. The real-time problems
detected in these layers [7] typically manifest themselves
with lock-ups and ill-defined semantics to the application.
It is often the case that throughput optimizations within
these middleware layers adversely impact predictability un-
der failure. Other problems can be traced to middleware
layers that defeat the application context and the end-user
argument (e.g., the middleware identifies and reacts upon
false dependencies among messages).

The paper describes our experience in building middle-
ware for RDDSs, from the definition of requirements to the
characterization of the resulting software. Our approach
differs from previous work on software fault management
in several ways:

• We combine fault management and real-time disci-
plines within an object-based framework. The result
is a family of solutions and trade-offs, rather than a
point solution.

• Our techniques include programming with system
resources [29] on a per communication channel ba-
sis, to avoid QoS-crosstalk and cascades of failures
caused by resource shortages.

• We characterize our work under adverse circum-
stances, i.e., the ones where failures conspire with
network load and CPU load to defeat determinism.

Our work explicitly aims at hundreds of milliseconds
worst-case timings for failure detection and recovery. Our
fundamental focus on real-time has driven the choice of al-
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gorithms, APIs, implementation techniques, interactions
with the host system, and tools for analyzing the behavior
and real-time characteristics of the resulting combination
of application, middleware, and host system. Our middle-
ware exports a process group abstraction to RDDSs; we
have dubbed it GIPC, for Group IPC.

It is appropriate to think of GIPC as delivering ISIS-
like functionality, but with real-time predictability built in
from the ground up.

We found additional challenges in tailoring the mid-
dleware to a wide variety of real-time environments, mak-
ing it highly adaptive, and re-using it within environments
where scalability requirements prevail over determinism
and responsiveness.

We use GIPC to build RDDSs upon commodity hard-

ware (e.g., PCs linked by Ethernet, FDDI, Myrinet) and to
provide sub-second guarantees within local area networks.
Typical deployment scenarios for our target RDDSs are:
factory floors, medical monitoring equipment, and military
command and control distributed applications.

This paper describes the features of GIPC. First we an-
alyze our requirements; then we introduce the model
adopted, the features of the inner protocols and layers, the
functionality exposed to the applications, and the imple-
mentation choices. The last sections analyze empirical re-
sults from test applications; among these, we describe a
dependable, distributed control application for a computer-
controlled mechanical apparatus.

2.   Middleware for real-time dependable dis-
tributed services: requirements

2.1. Functional requirements
Our target RDDSs must participate in fault manage-

ment. While application-transparent fault tolerance facili-
ties [24][25] are attractive because they reduce the burden
on the application developer, our real-time emphasis re-
quires that RDDSs be in control of the underlying “translu-
cent” [30] middleware layers to the greatest extent
possible. We believe that process groups are a powerful ab-
straction for RDDSs; the application interacts with the
group throughjoin, leave, post, andreceive explicit opera-
tions. We complement these typical process group verbs
with new verbs for negotiating QoS contracts with middle-
ware, on behalf of an individual group participant or of the
whole group. QoS contracts include: type of membership,
delivery semantics, group priority among the other groups,
traffic shape, etc.

The application must be able to perform administra-
tion of the group, and thus inject application-specific con-
text at important times in the life of the group.
Administrative duties include: enable/disable the join of
new endpoints, shutdown the group, renegotiate a QoS
contract due to external stimuli, re-admit endpoints parti-
tioned away by a transient failure, etc.. Partition manage-
ment best reflects the need for policies dictated by the
application. In some cases, the policy may be limited to a
simple majority decision (e.g., a farm of unspecialized ma-
chines crunching numbers); in other cases, the policy may
well discriminate between the role and location of the end-
points partitioned (e.g., machines associated with particu-
lar sensors).

The corollary is that middleware for RDDSs must be
as policy neutral as possible; policies flow from the appli-
cation to middleware, and in no circumstance should they
be overridden by middleware.

Our RDDSs typically use a small number of commu-
nication paradigms and delivery semantics. We identify
two points of aggregation: one for powerful, costly seman-
tics (e.g., “all or none” delivery) and one for limited, low-
overhead semantics (e.g., unreliable multicast). We require
that middleware supports at least FIFO Atomic Broad-
casts2 and raw IP multicast, respectively. For the FIFO
Atomic Broadcast to be predictable under failure, we are
prepared to sacrifice throughput. As we count on the
RDDS participating in fault management, we believe that

2.  A reliable broadcast is a group multicast that all correct group
participants deliver exactly once. A FIFO Atomic Broadcast is a reliable
broadcast with total ordering and FIFO ordering with respect to traffic
originated from the same source.
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the RDDS will limit itself to use this service sparingly, and
refrain from the idea of a “catch-all” reliable network ser-
vice implemented in middleware.

The notion of membership is crucial to a RDDS. Mid-
dleware must supply a RDDS membership views whose
properties—liveness vs. accuracy—are traded off based
upon explicit indication from the RDDS. Typical values of
liveness granularity range from 100 milliseconds to few
seconds. Aggregates of failures, either cascades of failures
or malicious denial of service attacks, must not prevent the
RDDS from obtaining a new, timely membership view.

2.2.  Requirements on implementation
The implementation of middleware for our RDDSs

must be highly modular and layered. We must be able to
add and replace modules to meet RDDS scenarios wherein
software configurations may vary in space (e.g., embedded
agents versus general purpose servers) and in time (e.g., an
aircraft control system during take-off, cruise, and landing).
Layering complements modularity by adding constraints on
how modules combine and interact. We observe that mid-
dleware structured according to modularity and layering
will naturally map to its own dependency graph (i.e., which
functions depend upon which functions); such a graph is in-
strumental in assessing the impact of failures within a node
(e.g., no more input memory buffers). Finally, engineering
inspired by modularity and layering allows an evolutionary
path towards more real-time, fault management, and secu-
rity functionality.

Object-oriented technology is an obvious way to pur-
sue modularity and layering.

Individual modules interact with the host system by
utilizing system resources (e.g., processing, memory, band-
width, etc.). Each of the modules must expose its own
“knobs-and-dials” to enable QoS selections by higher-level
modules and/or by a system administrator. It must be possi-
ble for a module to use a powerful interface to system re-
sources, including verbs to partition resources on a per-
channel basis (e.g., to guarantee forward progress of select-
ed functions while denial-of-service attacks are in
progress). Much like the QoS selections, the various choic-
es with respect to resources (e.g., guaranteed vs. over-
booked memory buffers) have to come from the context-
rich top layers.

2.3. Requirements on the host environment
For RDDSs to count on sub-second responsiveness to

failures, we require that real-time behaviors be provided
throughout all layers— middleware layers as well as system
layers and RDDSs. In fact, it is well-known that properties
such as real-time guarantees and resilience to denial-of-ser-
vice attacks are bottom-up properties. We assume that any

predictability anomaly observed in the system layers, and,
ultimately, in the hardware, can only be amplified by the
middleware3, not corrected.

Ethernet introduces anomalies through the exponential
back-off of CSMA/CD. We detected less obvious anoma-
lies while characterizing our middleware over Myrinet: the
on-board firmware for Myrinet defines its own liveness
mechanisms and granularity (i.e., it maps the topology once
a second). We will not be able to push a RDDS over Myri-
net to worst-case timings of hundreds of milliseconds un-
less we establish tight cooperation between the liveness
mechanisms in the middleware and the equivalent mecha-
nisms in the Myrinet firmware. With the emerging popular-
ity of intelligent network controllers and programmable
switches, the notion of “bottom” in bottom-up properties is
more elusive than ever.

The reference real-time platform that we use to exper-
iment with GIPC and RDDSs consists of the MK operating
system—a microkernel-based system derived from Mach
[2] and enhanced with a host of real-time features, includ-
ing preemptability, migrating threads [8], a framework for
scheduling policies and communication protocols [28] —
and FDDI, Myrinet, and Ethernet connectivity.

3.   The model

In the world that we want to model, several types of
failures may strike: fail-stop and crash failures, send and re-
ceive omission failures, ordering failures, and link data in-
tegrity errors. For GIPC to be sufficiently general,
identifying the scenario with weak hardware properties and
the largest enumeration of failures is crucial. This scenario
need not be the ideal target scenario for deployment, nor
need it have bottom-up real-time properties. A group of PCs
connected by an asynchronous and lossy link such as Ether-
net serves well as a “weakest scenario” testbed.

This design center is well understood [23] in the litera-
ture. Theory proves the equivalence between distributed
consensus and atomic broadcast in asynchronous systems.
As our requirements prompt us to provide both, the former
for membership and the latter for group communication, we
decide to implement atomic broadcast and to resolve dis-
tributed consensus problems with atomic broadcasts.

In an asynchronous environment, [16] states that even
a single crash failure makes distributed consensus and
atomic broadcast a problem impossible to solve. It turns
out, however, that the asynchronous model in [16] does not
apply directly to our design center. In fact, according to
[16], we can insert an arbitrary delay between any two state

3.  Some RDDSs on top of middleware may, however, be capable of
adaptive algorithms which compensate for the anomalies.



transactions (i.e., an arbitrary delay between two messages
from the network or an arbitrary delay between two in-
structions on the host). In real life, we know that each com-
puting node is equipped with a highly reliable quartz
crystal and has the notion of local time. Therefore, authors
have circumvented the asynchronous model in [16] with
the much friendlier timed asynchronous model. In this
model, it is possible to introduce the notion of a timing (or
performance) failure [11]: if we fail to reach a node within
a prescribed interval, we begin to advertise a failure for the
target node; we must be prepared, however, to deal with the
consequences of “false” failures being detected. Erroneous
decisions about failures may be reciprocated resulting in
partitions of the group.

With a timed asynchronous model, we can solve the
distributed consensus problem and we can perform atomic
broadcasts. The membership that results is said to be live
but not accurate: any failure is eventually detected (live),
even though timeouts may trigger erroneous decisions (not
accurate). This type of membership does meet our require-
ments (so long as valid group members share the same cor-
rect and erroneous decisions). The mechanism needed for
fault detection—called a fault suspector—may be topology
dependent.

We also require membership events to be totally or-
dered with respect to messages. Thus, we embrace the vir-
tual synchrony model [3] with the specific goal of
guaranteeing that the distance between virtual and real
world is small and bounded.

4.   The protocols

In this section we examine some fundamental design
choices that shed light on the internal architecture of the
GIPC middleware.

First, we distinguish between “physical” member-
ship—the society of physical nodes—and “logical” mem-
bership—the society of endpoints exported via the process
group abstraction (Figure 2). The fault suspector for phys-
ical membership is radically different from that for logical
membership. While physical membership requires hand-
shakes over the wire (“heartbeats”), logical membership
does not and can be layered on top of physical membership,
provided that physical membership can be configured to
take the requirements of logical membership.

Second, we isolate the fault-suspector subsystem from
the subsystem that provides reliability and ordering of data.
Protocol choices may be different for these two subsystems
to allow maximum efficiency for the given combination of
hardware properties, failure types, and topology. For in-
stance, while a neighbor surveillance protocol may be cho-
sen for the fault suspector, a master/slave based algorithm

may the best choice for reliability and ordering. Protocols
aside, application of different scheduling priorities and sys-
tem resources to prioritize one subsystem versus the other
(e.g., to make the fault suspector’s signalling take place at
higher priority than data traffic) can yield interesting em-
pirical results. This decoupling comes at a price, however:
traffic from one subsystem is much harder to piggyback on
top of the traffic of another subsystem.

Third, we reflect the reduction of the consensus prob-
lems to atomic broadcast by identifying a layer, the reli-
ability-ordering layer, which implements atomic broadcast
and does not know whether it is manipulating membership
views or application data. Membership views and applica-
tion data are totally ordered as required by virtual synchro-
ny.

Fourth, for the protocols that provide reliability and
ordering, we must choose between a master/slave scheme
and a rotating token scheme (although modularity won’t
preclude us from switching schemes or entertaining hybrid
solutions such as [12]). The former is based on an “oracle”
that supervises and legislates membership and ordering; in
practice, slaves propose multicasts to the master, and the
master actually performs the multicasts to the group via a
two-phase commit. In the latter, control is uniformly
spread among all participants, with a token that rotates
through all sites and arbitrates group events. After some
experimentation, we came to the conclusion that a master/
slave scheme is better suited for real time and thus is what
we implemented as default. Master/slave-based schemes
allow higher concurrency (the master multicasts to the
group while slaves unicast new multicast requests to the
master) and inherently increase the responsiveness of pro-
cess groups. Furthermore, the master is well positioned to
understand relative merit among slaves and schedule the
group activities accordingly; it is also able to apply group
policies very quickly. With a master, most failures are very
easy to deal with; on the other hand, the failure of the mas-
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ter is more complex to address, as it requires an election
process involving all slaves. In master/slave schemes, the
number of slaves is limited by the occurrence of traffic im-
plosion episodes at the master. With a token-based ap-
proach, the benefits and disadvantages tally differently.
While the message volume is always under control, and
there is no potential for implosion, the token represents a
severe limit to concurrency. Group maintenance and repair
are also much more complex due to the uniform distribution
of state and responsibilities among members.

Fifth, protocol headers are fixed size and do not depend
upon group population, since packets are addressed to the
whole group and do not carry dependency lists or vector
clocks4. Therefore RDDSs can assume a fixed overhead for
headers and can carry their own speculations with respect to
payload (e.g., will fragmentation occur or not) In case of
multicast-capable hardware, the number of packets trans-
mitted by any physical node is also independent from group
population.

Special effort must be devoted to keeping the virtual
synchrony model in close touch with reality. We model
each physical node as having only onefailure domain; this
domain covers the address spaces for the individual group
participants, GIPC itself, and the system layers that GIPC
depends upon. We further specify the chosen master/slave
scheme as one that provides safe delivery to failure do-
mains via positive acknowledgments. For a message to be
considered stable, and thus be disseminated to the various
group participants, the message must have successfully
reached the failure domain of each physical node involved
in a given group. Once a message has reached the failure
domain of a physical node, we trust GIPC to provide a fault
tolerant dissemination path to the participants registered
with the node. This may be accomplished, for instance, with
support of node-local resources such as stable storage. With
this definition of failure domain, we only transmit the ac-
knowledgments among failure domains rather than among
group endpoints5.

The pervasive use of positive acknowledgments, either
explicit or piggybacked, allows us to limit the number of
messages waiting to become stable, and thus provides an
upper bound on recovery actions. A situation where the
master waits for positive acknowledgments from all slaves
implies that the master has a precise knowledge of the
membership. This, however, is not problematic, as we must
track and expose membership views to participants in any
case. A master awaiting positive acknowledgments might
insist on resending the same data to slaves, just because the

4.  As is typical of causal ordering protocols, for instance.
5.  In much the same way as we transmit heartbeats only among

physical nodes and not among logical endpoints.

acknowledgment from one of the slaves has not yet arrived.
Our solution is to implement message operation in a pre-
emptive manner; thus, the above situation would persist
only until a new membership view (which is likely to evict
the slaves that do not reply) is proposed. The master will
then resume from the membership change by re-sending
old, unacknowledged data that has still some value under
the new membership view.

A well-known problem [9] with positive acknowledg-
ments is poor scalability. Whenever scalability matters, we
are prepared to relax positive acknowledgments by splitting
the set of all failure domains into a subset that is expected
to produce positive acknowledgments and a subset that is
expected to produce negative acknowledgments. Should
the master fail, the former subset will be the one used for
electing a new master within a bounded period of time.

Timely detection of partitions is also crucial for allow-
ing protocols based on the virtual synchrony model to track
reality. There is a function dedicated to “snoop” partitioned
members and pass this information along to a RDDS
throughout the API. This protocol is not entitled to apply
any particular policy; rather, its mission is to alert the
RDDS to act upon a partition.

Several algorithms in the protocols for membership,
reliability, and ordering are prone to livelock situations. For
instance, a failure that manifests itself with a hardware
flicker can induce the middleware to continuously bid new
membership views, and thus prevent any other protocol
from making forward progress. We discourage livelocks by
inserting filters (“skeptics”) above any object that can in-
duce livelocks into higher layers6. A skeptic artificially lim-
its the rate of status changes observed in the underlying
objects.

5.   The API

The API legislates how a RDDS connects to GIPC. We
have defined an API for process groups and implemented it
for the MK, UNIX (e.g., HP-UX, OSF/1), and Windows/
NT operating systems. We anticipate working with multiple
API specifications and implementations. The former are
prompted by the need for different abstractions, whereas
the latter are prompted by dependencies on the IPC mecha-
nisms that a particular platform avails. Thus the modularity
and layering guidelines must apply to the API component
as well.

In the default API, a RDDS interacts with a process
group by joining or leaving the group, sending and receiv-
ing data, receiving membership information, and negotiat-

6.  It is appropriate to think of these filters as low-pass hardware fil-
ters implemented in software,



ing QoS contracts with GIPC. Such contracts may affect
the whole group (e.g., type of membership and delivery se-
mantics), or the individual endpoint which performs the
operation (e.g, advertise traffic shape). The individual por-
tion of the QoS contract is particularly relevant for end-
point liveness: the endpoint advertises the rate at which it
will be signalling to GIPC, and should endpoint signalling
exceed that range, GIPC will call for a performance failure.
It will unilaterally terminate the endpoint, and supply the
updated membership view to the surviving members of the
group.

The operation of joining a group is not subject to real-
time constraints; it is guaranteed, however, that joins do not
jeopardize real-time guarantees of endpoints already in the
group. There is a synchronous version of the operation of
posting to a group (i.e., post and wait until the message be-
comes stable) and an asynchronous version (i.e., post re-
turns immediately and an upcall confirms the message’s
stability).

On our real-time reference platform, the API has been
implemented to support multiple threads and to use a real-
time capable IPC mechanism based on migrating threads
[8].

6.   Implementing GIPC within CORDS

6.1. The toolkit
GIPC is built using CORDS7, our object-based com-

munication framework and toolkit derived from the Uni-
versity of Arizona’s x-kernel technology [22]. Researchers
using the x-kernel and CORDS have shown the practicality
of creating a library of composable, “off-the-shelf” proto-
col objects—be it standard protocols or application-specif-
ic protocols. The modules in the library can be composed
in various protocol graphs such as the one in Figure 3, and
later re-used in other contexts. CORDS is highly portable;
platform dependencies are entirely resolved within the
framework (i.e., no impact on the protocols in the library).

CORDS protocol objects derive from the same root
class, and are specialized with protocol specific state and
functions. Introspection among protocol objects allows
probing for features of neighboring protocol objects (e.g.,
multicast capability, MTU size, etc.). In the current version
of CORDS, the edge connections among protocols shown
in Figure 3 are static and established at compile time.

CORDS provides early demultiplexing and manage-
ment of system resources (i.e., processing, memory, band-
width) on the basis of individual communication channels
or “paths” [29] throughout the protocol graph. A path can

7.  Communication Objects for Real-time Dependable Systems

be thought of as the host-internal representation of an end-
to-end flow; a path, however, is not bound to the use of spe-
cific communication paradigms such as TCP connections
or IPv6 flows. Through the path abstraction, a CORDS user
isolates sub-sets of traffic, selects system resources, and
make the connection between the two. Early demultiplex-
ing operates on input traffic and aggressively classifies
packets among paths with pre-assigned resources or default
resources. Paths can be statically or dynamically config-
ured.

Within the library of protocols available in CORDS8,
there are several packages that proved very useful while
debugging, testing, and characterizing CORDS real-time
set-ups like GIPC. First, the ORCHESTRA [13] fault in-
jection package developed at the University of Michigan
allows us to artificially create failure scenarios by filtering
and sometimes altering input traffic. The protocols that
compose this package can be seamlessly built into a GIPC
protocol graph to exercise its protocol components, and to
study their resilience to deadlocks or livelock situations.
This package has greatly improved the robustness of our
protocol implementations. Second, the LTS9 clock syn-
chronization package is a collection of protocols that pro-
vide an external clock synchronization service based on a
probabilistic synchronization algorithm [10], and a clock
amortization algorithm [27]. Unlike NTP, LTS guarantees
an upper bound on the synchronization offset and defines
failure semantics for those cases where the guarantees can-
not be met. LTS proved useful in the off-line synchroniza-
tion of events occurring at different nodes.

Protocols in CORDS can also take advantage of sever-
al utilities for exposing tunable parameters in a uniform
fashion, for logging time-stamped events [6], and collect-
ing statistics.

6.2. The GIPC protocol graph
The flexibility of the CORDS framework greatly ex-

tends the reach of the GIPC implementation. We have an-
ecdotal evidence that some of the following actions already
helped ourselves in the evolutionary path towards real-time
fault tolerance:

• protocol interposition (e.g., skeptic, fault injection)

• protocol replacement (e.g., sequencer vs. token)

• protocol addition (e.g., partition detector)

• protocol removal (e.g., heartbeat done in hardware)

• protocol reuse (e.g., panning protocol, IP multicast)

8.  About 60 protocols.
9.  LTS’ availability is limited to the MK system. Note that none of

the protocols in GIPC depends upon LTS or any other distributed clock.



Implementing the protocol graph described in Figure 3
was challenging, due to the rich interactions among proto-
cols. The main differences between a protocol graph like
GIPC and a linear one, such as UDP over IP over Ethernet,
are co-dependency among protocols and co-dissemination
of data and control. In GIPC, the membership protocol and
the sequencer protocol are co-dependent. For some opera-
tions, one would like to layer the sequencer protocol above
the membership protocol (i.e., the sequencer depends upon
membership information to terminate an atomic broad-
cast—how many acks should I wait for); on the other hand,
membership depends upon the sequencer protocol for
achieving consensus on a new membership view (i.e.,
membership initiates atomic broadcasts on its own). Co-
dissemination occurs when a message needs to be carbon-
copied to more than one higher level protocol to notify that
an event has occurred.

Our findings are consistent with other efforts [5] that
have faced limitations of frameworks like the x-kernel

when pushing protocol composition to its limits. Our solu-
tion was to extend the CORDS framework with more pow-
erful flavors of existing semantics, or by adding new
semantics (such as a publish/subscribe relation among pro-
tocols).

Managing system resources is extremely useful in
GIPC. The non-interference (or, better, controllable inter-
ference) property among paths can be extended to individ-
ual process groups or functions within a group. The first
and also simplest application of paths within GIPC was to
isolate the fault suspector’s traffic and have it use reserved
network buffers and threads with some real-time schedul-
ing attributes. This way the fault suspector path can be
shielded from the node workload, and the chances of
“heartbeats” falling behind, resulting in false detections, are
decreased. More sophisticated uses of paths include imple-
menting privileged process groups and expedited messages
within a group. As a message is associated with a path, and
thus with threads and scheduling attributes, messages with

Figure 3: The protocol objects constituent of GIPC and their organization.
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GIPC API provides the notion of multiple groups with multiple end-
points per group per physical node. It also implements the
endpoint liveness protocol and the verbs needed for QoS
contract negotiation.

census-
taker

maps the topology and promotes new membership views
upon timeouts. When in a master/slave schema, it only runs
on masters.

skeptic implements a low-pass filter which limits status changes in
underlying objects.

heartbeat produces pseudo-isochronous signalling. When in a master/
slave schema, it only run on slaves.

lock abstracts a distributed lock.

partition “snoops” partitions and forwards unreliable partition notifi-
cations to other subsystems that registered for this service.

mship provides a database with the most recent membership view.

sequencer realizes the reliability and ordering functions in a master/
slave schema.

panning filters out input packets that do not belong to a current
membership view.

IP Standard protocol (including multicast extensions)

BOOTP Standard protocol

vnet Handle multiple network adapters

ARP Standard protocol

ETH Standard protocol (also: FDDI, MYRINET)

xkwd/wd0 Bottom anchor (machine dependent)

Table 1: Protocol name and mission



higher priority naturally preempt messages with lower pri-
ority. Programming with resources is also a useful line of
defense against cascades of failures that originate from
lack of resources (e.g., no more network buffers)

7.   Empirical results

Our standard real-time testbed consists of a pool of
100 Mhz Pentium PCs connected by 10 Mb/s Ethernet,
Myrinet, and FDDI10. The PCs run GIPC and the real-time
MK operating system.

We engaged up to 8 PCs in a GIPC process group, with
one group endpoint on each of the PCs. The test driver that
exercises GIPC, and thus simulates a RDDS, performs
FIFO Atomic Broadcasts to the group from one of the end-
points; it uses the synchronous version of the GIPC API for
posting to the group. The group is configured with a 300
milliseconds liveness granularity; this is the single largest
contributor to the observed failure detection time of end-
points.

In characterizing the real-time properties of the sys-
tem, we repeated the process of identifying outliers and
correlating them with non-deterministic behaviors in
GIPC, in the operating system, or in the underlying firm-
ware/hardware. In each case, we were either able to fix
bugs or tune parameters to eliminate the outliers, or we de-
termined that they were the result of unpredictable behav-
iors of firmware/hardware. For our testing, it was far more
practical to instrument CSMA/CD and understand the im-
pact of collisions, if any, than to use link technologies with
unexpected real-time limitations, such as Myrinet (Section
2.3). Therefore, we used Ethernet with an instrumented
CSMA/CD, and in the load tests, we excluded a very small
number of data points affected by unacceptably long
CSMA/CD collision storms.

In the first set of measurements, we investigated the
effect of packet loss on group post latency and membership
view latency. We measured the minimum, average, and
maximum latency of a group post operation on a node
which was continuously posting, while packets on the net-
work were artificially dropped at each of the physical
nodes in the group (Figure 4). In this test, we do not con-
sider any membership event.

Figure 5 shows the latency of a membership event
(i.e., a PC is manually crashed) during the same regime of
packet omission failures as in Figure 4. The membership
event delivers a new, stable membership view; the latency
includes two factors: the time for the failure detection (con-
figured at 300 msecs) and the time for the atomic broadcast

10.   FDDI connectivity is temporarily limited to 2 nodes, due to lo-
gistical problems

that makes the proposed membership view stable (shown
in Figure 4). Note that we are considering packet loss that
is much greater than that observed during typical use, but
might be observed in a partially damaged network or in one
under attack.

In the following set of measurements, we have quanti-
fied the effects of network load on group post latency.
Without using CORDS paths, we observe a severe degra-
dation (Figure 6). CORDS paths and early demultiplexing,

Figure 4: Group post latency vs. packet
drop rate.
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Figure 5: Membership view latency vs.
packet drop rate.

0

50

100

150

200

250

300

350

0 5 10 15 20 25

M
em

be
rs

hi
p 

ch
an

ge
 la

te
nc

y 
(m

s)

Net packets drop rate (%)

min
max

2

4

6

8

10

12

14

16

18

20

0 500 1000 1500 2000

m
sg

 la
te

nc
y 

(m
s)

network load (pps)

*

* - group partitions

average
min,max

Figure 6: Group post latency vs. net load,
without paths.



however, allow us to protect the group traffic from network
load (Figure 7), and provide a better sample distribution. In

both cases, the group eventually partitions due to interfer-
ence from the competing load. However, the use of paths
makes the system much more resistant. This result reaf-
firms the effectiveness of paths in a different environment
than we used in [29].

We have quantified the effect of system load on group
post latency (Figure 8). The load is generated via AIMIII, a

multi-user test suite that simulates a variable number of typ-
ical users for each of the PCs in the GIPC group. We also
note that the AIMIII load does, in fact, compete with GIPC
and its test driver; the benchmark runs more slowly when
the GIPC test is running.

Finally, we investigated the relationship between the
group post latency and the number of PCs in the group. Pos-
itive acknowledgments are obviously responsible for the
progressive loss in responsiveness; there is no evidence,
however, of outliers. The switch between positive and neg-
ative acknowledgments anticipated in Section 4 will allow
each RDDS to pursue its own trade-off of responsiveness
vs. scalability (work in progress).

8.   Empirical results from use of a RDDS

We have developed a small-scale, dependable, real-
time distributed process control application for a physical
testbed (Figure 10).

Colored golf balls are dropped into a vertical tube,
where they fall at gravity speed. At the end of the tube, flip-
pers divert each ball to the left or right, depending on color.
If no decision has been made or if the decision happens at
the wrong time, the ball falls through the middle and is des-
ignated a failure.

One computer, the ‘‘control’’ node, is physically con-
nected to the sensors and controllers on the apparatus. The
timing and sorting decisions are performed by the other
‘‘compute’’ nodes. The control node and the compute
nodes form a process group. The group members also have
access to a distributed clock realized through LTS bounded-
offset clock synchronization protocol (also implemented
within CORDS).

Sensors along the tube record the initial velocity and
reflectivity index (color) of the ball, which are read by the
application on the control node. The application on the con-
trol node uses GIPC to make a reliable ordered broadcast of
this data to the compute nodes.

The group members on the compute nodes use the re-
flectivity value to determine color and calculate the distrib-
uted clock time at which the golf ball will reach the bottom
of the tube—a simple physics calculation suffices. At that
time, they each send an unreliable message back to the con-
trol node, directing it to move a right or left flipper. If no
message is received or is received at the wrong time, the
ball drops through the tube, unsorted.

If we crash one of the compute nodes, the consensus
process on the new group membership view will start and
take precedence over any other traffic. We claim that there
is an upper bound on the time it takes to terminate the con-
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Figure 7: Group post latency vs. net load,
with paths.
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Figure 8: Group post latency vs. multi-
user load.
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sensus process with a new membership view. Furthermore,
the distributed control application only works if the popu-
lation in the latest view is greater than a pre-established
limit: below this limit, the application suddenly stops with
recognizable failure semantics.

Since golf balls are mechanically fed into the tube at
the rates of up to 4 balls per second, we assert that at most
one ball will be dropped for each crash of the compute
nodes, until we reach the threshold for the lowest member-
ship acceptable.

As a demonstration, the application is convincing be-
cause the timing constraint and success or failure condition
are extremely clear and obviously independent of any com-
putational element in the system.

The demonstration11 is also an excellent, though sim-
plified, model of more realistic applications. The actual
calculation is trivial and any live compute node can com-
plete the control loop. In a more realistic application, the
calculation may need to be divided among the compute
nodes in some way. Or the algorithms chosen for the calcu-
lation may be based on the number of available compute
nodes in the group. The real-time process group paradigm
simplifies the development of these kinds of applications.

9.   Related work

To our knowledge, Flaviu Cristian introduced the
timed asynchronous model and the notion of performance
failures [11]. These are the foundation of our GIPC work.

ISIS [3] and its successors Horus [4] and Ensemble are
middleware for building fault tolerant services. They pro-
vide a host of delivery semantics and complex services for

11.  With a MPEG capable Web browser, it is possible to see the
control application and the apparatus in operation at URL http://
www.opengroup.org/RI/PubProjPgs/CORDS.htm.

transparent replicas, partition healing, etc. They are not,
however, specialized on real-time behaviors. Our approach
is to experiment with real-time functionalities first, and
make progress along richer semantics and scalability later
on. We have adopted the virtual synchrony model; we are
uninterested, however, in causal ordering and we only con-
sider atomic broadcast for our set of real-time functional-
ities.

Transis [19] and Totem [20] are also middleware for
fault tolerant services; they exhibit a stronger real-time be-
havior than ISIS and its successors. To our knowledge,
however, there are no published results on their maintain-
ing predictable behavior in the presence of unpredictable
and potentially significant competing load. While Totem
uses a rotating token to implement atomic broadcasts,
GIPC uses a master/slave schema, which we thought to be
more responsive in RDDS scenarios. GIPC’s modularity,
however, does not preclude from replacing the master/
slave schema with Totem’s protocol or hybrids.

The master/slave protocol that we have chosen for
atomic broadcasts is similar to the one in Amoeba. Our im-
plementation choices, however, are not consistent with the
Amoeba code.

From Consul [21], we have taken the protocol frame-
work (i.e., the x-kernel) and the goal of modularity. We
have not imported the Consul protocols, though, because
Psync would have brought more complexity that was actu-
ally needed in our context (we do not aim to have context
graphs for recovery nor do we want to take advantage of
causal ordering). Horus is also highly modular and inspired
from earlier x-kernel work as well.

With the DELTA-4 XPA [26] project, we share the
strong QoS connotation of the xAMp protocol suite.

The ARMADA project [1] at University of Michigan
and the Cactus project [17] at University of Arizona have a

Figure 10: A distributed process control application.
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research agenda similar to GIPC. Their real-time reference
platform is also based on CORDS and MK; with them, we
exchange technology in the form of CORDS protocols
(e.g., GIPC, ORCHESTRA).

10.   Conclusions and future work

We have described our experience in building middle-
ware explicitly targeted to RDDSs, from the understanding
of the requirements to the characterization of the resulting
GIPC technology and its actual demonstration application.
Preliminary empirical results show that the central focus on
real-time properties pays off. It is also interesting to note
that our work draws some of its strength from the CORDS
development environment, its object-based nature, and its
real-time properties, including controllable interference
among communication channels.

Our experience argues that satisfying real-time re-
quirements is more than a simple matter of adding small
number of timeouts to a large legacy code base. On the oth-
er hand, we anticipate (and welcome) criticisms from those
who believe that we have not done nearly enough to ad-
dress, say, mission critical real-time scenarios. This is the
intrinsic charm of the real-time discipline.

GIPC and CORDS are available on MK and, with more
limited real-time properties, on UNIX, and Windows NT.

GIPC is an ongoing effort. We anticipate develop-
ments in the paradigms for composing multiple process
groups, and new abstractions derived from process groups,
like, for instance, group RPCs [8]. We are also interested in
communication paradigms stronger and weaker than FIFO
Atomic Broadcasts (e.g., FIFO Atomic Broadcasts with es-
timated physical clock ordering and scalable reliable multi-
cast, respectively).
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