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Distributed Real-time Systems

Why bother with distributed real-time?
Command and control problems are (unavoidably) distributed.

Multimedia and collaborative (i.e. soft real-time) problems can be.

Distributed solutions are scalable.

Distributed systems have the opportunity to continue operation in the
presence of partial failures.

Internet

Control Nodes

Control Nodes
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Paradigms

The problem of unsorted golf balls...?

Virtual synchrony model ensures distributed consensus
among nodes. Application can make powerful assumptions.

A communication framework provides end-to-end reservation
and control of resources.

The result is predictable behavior in a dynamic (failure-prone)
environment.

With a focus on configurability and adaptivity, these solutions
are practical for problems that do not have hard real-time
requirements.
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MK 7

Trusted, distributed real-time, standards-compliant, operating
system.

Single microkernel source base with scalable configuration
options.

In real-time configurations:

• preemptible kernel

• real-time threads and synchronizers

• scheduling framework: separate policy and mechanism

• resource reservation (e.g. buffers)

• low level system clock management
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CORDS: Communication Objects for Real-time Dependable Systems

Framework and toolkit for writing protocols and composing the
stack from protocol graphs. Graphs can be instantiated in-
kernel, as middleware, or both.

• Uniform interface and common utilities for all protocols

• Derived from the x-kernel (U. of Arizona)

Key addition is the “paths” abstraction, providing control over
system resources, such as memory, CPU and bandwidth.

Within CORDS, we have implemented:

• KKT: a communication subsystem for multicomputer clusters

• LTS: a bounded-offset clock synchronization facility

• GIPC: process groups (strong membership, atomic bcast)
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LTS:  Bounded Offset Synchronization

Based on probabilistic algorithm due to F. Cristian et. al.

Provides a distributed counter with a guaranteed bounded
offset from the master counter.

This distributed clock can explicitly fail with probability > 0.

LTS assumes a bounded drift of the local clock. LTS does not
guarantee the frequency of the distributed clock.

By contrast, NTP uses statistical analysis to correct the local
clock frequency based on input from other clocks.

Implemented as an MK kernel-level CORDS protocol and
relies on its real-time properties.



HPDC-6: August, 1997

GIPC: Real-time process group

GIPC group communication maintains consensus on
membership and ordering of all messages.

Though simple API’s, GIPC provides an application with:

• Consistent view of group membership with sequence number

• FIFO atomic broadcast with sequence number

• Unreliable broadcast

These are powerful abstractions for distributed computing.

Implementation within CORDS gives real-time properties:

• Predictable execution time

• System resource reservation
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GIPC (cont’d)
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Distributed Application: GIPC Ring demo

Visual demonstration of virtual synchrony and global state: All
nodes must agree on membership and order of all traffic.
The ring immediately reconfigures on a membership change.

Node that owns the marker abcasts its position for 9 steps. Node
controlling opposite position draws anti-marker in response.

When marker is about to transition, “next” node begins broadcasting.

If marker is lost, anti-marker becomes marker.

21 3 4 5
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Control Application: Ballsorting
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Distributed Sorting Algorithm

Compute nodesControl node

1. Detect proximity A
2. Detect proximity B
3. Sense color
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Distributed Ballsorter

LTS Clock synchronization: +/- 1.25ms, guaranteed bound

GIPC group membership change: up to ~250ms

Total sleep time: ~48ms

At 4 balls/sec, drop at most one ball per compute node failure

d = 0 m, t = 0 s
d =.089, t = .135

d =.432, t = .296

d =.838, t = .414

d =.946, t = .439
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t = dist. clock
v = velocity
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control compute
Left/Right
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send
Compute
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arrival at flippers at
dist time = f (t, v)
sleep using local

send replyreply~118ms

clock

node nodes
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GIPC atomic
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flippers

Ballsorter

GIPC atomic
broadcast

GIPC ring demo
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Impact and Future Work

CORDS and GIPC are extractable technologies:

• HP-UX and NT ports are used in our Scalable, Highly-available
Web Server.

• DASCOM has announced use of CORDS for secure routers

• Alacron/Honeywell AVIS system uses CORDS over Myrinet

• U. Michigan RTCL/Honeywell Technology Center (ARMADA)

• U. Arizona (Prof. Schlichting)

Ongoing work to characterize and improve real-time
performance -- sort balls under arbitrary load.

Next-generation CORDS will focus on dynamic protocol
graphs, mobile code technologies for active networks,
security and distributed resource management.
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Experimental results: Paths

Overall udp/ip latency is comparable to commercial systems.

The use of paths reduces “jitter” of the udp/ip roundtrip times
in the presence of network load.
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Figure 4: Density functions of UDP/IP round-trip times: the use of paths with privileged resources (solid lines) limits
Interference with simulated background traffic (two (a) and four (b) concurrent 16K memory to memory transfers initiated and sustained
from both nodes).

(a) (b)



HPDC-6: August, 1997

Experimental Results: LTS ( preliminary)

Eventual goal is to sort balls under arbitrary (network and
CPU) system load.

LTS depends on low “jitter” for LTS network traffic. Quantify the
hit that LTS takes in the presence of hgh CPU load.
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Experimental Results: LTS and NTP( prelim.)

LTS configuration and performance: 1ms bound

NTP has low network cost, but gives no guarantees, even good conditions.
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Configuration

assumed max drift: 200 ppm

Performance

rejected replies: 9.6%
rapport interval: 558 / 250 / 804 ms (avg/min/max)
roundtrip (valid replies): 976 ms avg.

retry period: 1.5 sec
roundtrip time (min/max): 800/1100 usec


