
HPDC-6: August, 1997

A demonstration of a real-time fault-
tolerant distributed application

HPDC-6: August, 1997

Douglas Wells
d.wells@opengroup.org

Laura Feeney
l.feeney@opengroup.org

The Open Group
Research Institute

http://www.opengroup.org/RI

HPDC-6: August, 1997

Distributed Real-time Systems

Why bother with distributed real-time?
Command and control problems are (unavoidably) distributed.

Multimedia and collaborative (i.e. soft real-time) problems can be.

Distributed solutions are scalable.

Distributed systems have the opportunity to continue operation in the
presence of partial failures.

Internet

Control Nodes

Control Nodes

HPDC-6: August, 1997

Paradigms

The problem of unsorted golf balls...?

Virtual synchrony model ensures distributed consensus
among nodes. Application can make powerful assumptions.

A communication framework provides end-to-end reservation
and control of resources.

The result is predictable behavior in a dynamic (failure-prone)
environment.

With a focus on configurability and adaptivity, these solutions
are practical for problems that do not have hard real-time
requirements.

HPDC-6: August, 1997

MK 7

Trusted, distributed real-time, standards-compliant, operating
system.

Single microkernel source base with scalable configuration
options.

In real-time configurations:

• preemptible kernel

• real-time threads and synchronizers

• scheduling framework: separate policy and mechanism

• resource reservation (e.g. buffers)

• low level system clock management

HPDC-6: August, 1997

CORDS: Communication Objects for Real-time Dependable Systems

Framework and toolkit for writing protocols and composing the
stack from protocol graphs. Graphs can be instantiated in-
kernel, as middleware, or both.

• Uniform interface and common utilities for all protocols

• Derived from the x-kernel (U. of Arizona)

Key addition is the “paths” abstraction, providing control over
system resources, such as memory, CPU and bandwidth.

Within CORDS, we have implemented:

• KKT: a communication subsystem for multicomputer clusters

• LTS: a bounded-offset clock synchronization facility

• GIPC: process groups (strong membership, atomic bcast)

HPDC-6: August, 1997

LTS: Bounded Offset Synchronization

Based on probabilistic algorithm due to F. Cristian et. al.

Provides a distributed counter with a guaranteed bounded
offset from the master counter.

This distributed clock can explicitly fail with probability > 0.

LTS assumes a bounded drift of the local clock. LTS does not
guarantee the frequency of the distributed clock.

By contrast, NTP uses statistical analysis to correct the local
clock frequency based on input from other clocks.

Implemented as an MK kernel-level CORDS protocol and
relies on its real-time properties.

HPDC-6: August, 1997

GIPC: Real-time process group

GIPC group communication maintains consensus on
membership and ordering of all messages.

Though simple API’s, GIPC provides an application with:

• Consistent view of group membership with sequence number

• FIFO atomic broadcast with sequence number

• Unreliable broadcast

These are powerful abstractions for distributed computing.

Implementation within CORDS gives real-time properties:

• Predictable execution time

• System resource reservation

HPDC-6: August, 1997

GIPC (cont’d)

Sequencer

IP

Heartbeat

 API,
test traffic
generator

etc.

BOOTP ARP

ETH

Vnet

A CORDS implementation
of the GIPC service (MK)

Sequencer

Census-
taker

Panning

Member-
ship

USER

KERNEL

 Thoughput on HP-UX

CLIENT

Some preliminary data

0

50

100

150

200

250

300

350

400

450

500

2 3 4 5 6 7 8

m
sg

/s
ec

nodes

Atomic Broadcast Thoughput

one sender
n senders (total)

n senders (indiv.)
n senders (ideal = 1/n)

MK latency:
5 nodes, no node failures:
8.7 / 6.0 / 16 ms (mean/ min/ max)

HPDC-6: August, 1997

Distributed Application: GIPC Ring demo

Visual demonstration of virtual synchrony and global state: All
nodes must agree on membership and order of all traffic.
The ring immediately reconfigures on a membership change.

Node that owns the marker abcasts its position for 9 steps. Node
controlling opposite position draws anti-marker in response.

When marker is about to transition, “next” node begins broadcasting.

If marker is lost, anti-marker becomes marker.

21 3 4 5

5421 3

HPDC-6: August, 1997

Control Application: Ballsorting

Proximity A
Sensors

Flippers

Color Sensor

Proximity B

tA

tB

Control node

reflectivty r=

t2

2

d

d x
g=

 
 
 

t flip⇒

f r() left right||⇒

HPDC-6: August, 1997

Distributed Sorting Algorithm

Compute nodesControl node

1. Detect proximity A
2. Detect proximity B
3. Sense color

>

<
9. Move flippers

>
5. Determine correct bin
6. Compute arrival time at

flippers using distributed
time (LTS)

7. Sleep on local clock
.....

<

4.GIPC
Atomic

Broadcast

8. Point-to-
point reply(s)

tA t lts()=

reflect r=
tB t lts()=

left right||

HPDC-6: August, 1997

Distributed Ballsorter

LTS Clock synchronization: +/- 1.25ms, guaranteed bound

GIPC group membership change: up to ~250ms

Total sleep time: ~48ms

At 4 balls/sec, drop at most one ball per compute node failure

d = 0 m, t = 0 s
d =.089, t = .135

d =.432, t = .296

d =.838, t = .414

d =.946, t = .439

proximity sensor

proximity sensor
color sensor

t = dist. clock
v = velocity
C = sensor

control compute
Left/Right

60ms

send
Compute
L/R = f (C)

arrival at flippers at
dist time = f (t, v)
sleep using local

send replyreply~118ms

clock

node nodes

ethernet, myrinet

GIPC atomic
broadcast

point-to-point
replies

flippers

Ballsorter

GIPC atomic
broadcast

GIPC ring demo

HPDC-6: August, 1997

Impact and Future Work

CORDS and GIPC are extractable technologies:

• HP-UX and NT ports are used in our Scalable, Highly-available
Web Server.

• DASCOM has announced use of CORDS for secure routers

• Alacron/Honeywell AVIS system uses CORDS over Myrinet

• U. Michigan RTCL/Honeywell Technology Center (ARMADA)

• U. Arizona (Prof. Schlichting)

Ongoing work to characterize and improve real-time
performance -- sort balls under arbitrary load.

Next-generation CORDS will focus on dynamic protocol
graphs, mobile code technologies for active networks,
security and distributed resource management.

HPDC-6: August, 1997

Experimental results: Paths

Overall udp/ip latency is comparable to commercial systems.

The use of paths reduces “jitter” of the udp/ip roundtrip times
in the presence of network load.

UDP/IP round-trip times (seconds)

de
ns

ity
 fu

nc
tio

n
(n

. s
am

pl
es

, l
og

. s
ca

le
)

0.0 0.01 0.02 0.03 0.04 0.05

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

UDP/IP round-trip times (seconds)

de
ns

ity
 fu

nc
tio

n
(n

. s
am

pl
es

, l
og

. s
ca

le
)

0.0 0.01 0.02 0.03 0.04 0.05

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

UDP/IP round-trip times (seconds)

de
ns

ity
 fu

nc
tio

n
(n

. s
am

pl
es

, l
og

. s
ca

le
)

0.0 0.01 0.02 0.03 0.04 0.05

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

UDP/IP round-trip times (seconds)

de
ns

ity
 fu

nc
tio

n
(n

. s
am

pl
es

, l
og

. s
ca

le
)

0.0 0.01 0.02 0.03 0.04 0.05

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Figure 4: Density functions of UDP/IP round-trip times: the use of paths with privileged resources (solid lines) limits
Interference with simulated background traffic (two (a) and four (b) concurrent 16K memory to memory transfers initiated and sustained
from both nodes).

(a) (b)

HPDC-6: August, 1997

Experimental Results: LTS (preliminary)

Eventual goal is to sort balls under arbitrary (network and
CPU) system load.

LTS depends on low “jitter” for LTS network traffic. Quantify the
hit that LTS takes in the presence of hgh CPU load.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

400 450 500 550 600 650 700 750 800 850 900
round trip / 2 (ms)

LTS traffic round trip times -- histogram

no load
load

load (orig)

HPDC-6: August, 1997

Experimental Results: LTS and NTP(prelim.)

LTS configuration and performance: 1ms bound

NTP has low network cost, but gives no guarantees, even good conditions.

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

10000 20000 30000 40000 50000 60000 70000 80000

o
ff

s
e

t
(s

e
c
)

time (sec)

Offset measured at NTP client

host1
host2
host3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

10000 20000 30000 40000 50000 60000 70000 80000

d
ri
ft

 (
p

p
m

)

time(sec)

Drift measured at NTP client

host1
host2
host3

NTP Perfomance Data (loopstats)

Configuration

assumed max drift: 200 ppm

Performance

rejected replies: 9.6%
rapport interval: 558 / 250 / 804 ms (avg/min/max)
roundtrip (valid replies): 976 ms avg.

retry period: 1.5 sec
roundtrip time (min/max): 800/1100 usec

