Translation diagram:

Is enough 6 bits for Current Virtual Address Space ID (CVASID)? Should we also use BAT?

PTE:

Each PTE is 4 bytes in size. Enough?

31		PS	11	9	8	7	6	5	4	3	2	1	0	
	Physical Page Number (32-PS bit)		PP Index (3 bit)	(U2	U1	D	А	00	WB	CI	МС	V	

PP Index: index to an array of registers for page protection. Each page protection policy specifies RWX bits for supervisor and for user mode (so 6 bits per policy, 8 possible policies).

U2, U1: used by operating system for what ever reason.

D: dirty (page will have to be written back to swap and not simply discarded from physical memory)

A: accessed (if page is accessed; a hint to OS which pages to replace when new pages must be brought into physical memory)

OO: Out-of-Order accesses (load only? store only? both?)

WB: controls cache operations: write back type of caches else write through caches

CI: controls cache operations: cache inhibit

MC: memory coherency (or should we call it cache coherency)

V: valid