OpenRISC 1000

System Architecture Manual

18/Apr/2000, DRAFT

About this Manual

1.1 Brief Introduction

OpenRISC 1000 system architecture manual defines architecture for a family of open source, synthesizable RISC microprocessor cores. As an architecture, OpenRISC 1000 allows for a spectrum of chip and system implementations at a variety of price/performance points for a range of applications. It is a 32-bit load and store RISC architecture designed with emphasis on speed, simplicity and scalability. OpenRISC 1000 targets medium and high performance embedded environments.

Architecture itself covers instruction set, register set, cache management and coherency, memory model, exception model, addressing modes, operands conventions and application binary interface (ABI).

This manual does not specify implementation specific details such as pipeline depth, cache organization, branch prediction, instruction timing, bus interface etc.

1.2 Authors

If you have contributed to this manual and your name isn't listed here, it is not meant as a slight. We just don't know about it. Send email to the maintainer(s), and we'll correct the situation.

Name
E-mail
contribution

Damjan Lampret
lampret@opencores.org
Initial document

Figure 1‑1. Authors of This Manual

Revision History

Revision history of this manual.

revision date
BY
MODIFICATIONS

15/Mar/2000
Damjan Lampret
Initial document

Figure 1‑2. Revision History

1.3 Work in Progress

This document is work in progress. Latest version is always available from OPENCORES CVS. See details how to get it on http://www.opencores.org/.

We are currently looking for people working on this document and for a maintainer of this document. If you would like to contribute send an email to one of the authors.

1.4 Fonts in this manual

In this manual, fonts are used as follows:

· Typewriter font is used for programming examples

· Bold font is used for emphasis

· UPPER CASE items may be either acronyms or register mode fields that can be written by software. Some common acronyms appear in the glossary in this chapter

· Square brackets [] indicate an addressed field in a register or a numbered register in a register file
Architecture Overview

This chapter introduces OpenRISC 1000 architecture and describes general architecture features.

1.5 Features

OpenRISC 1000 architecture includes the following principal features:

· A completely open and free architecture

· A linear, 32-bit logical address space with implementation specific physical address space

· Simple and uniform-length instruction formats featuring two different ISAs:

· OR32 Instruction Set for 32 bits wide instructions aligned on 32-bit boundaries in memory operating on 32 bits and 64 bits data

· OR16 Instruction Set for 16 bits wide instructions aligned on 16-bit boundaries in memory operating on 32 bits data

· Simple memory addressing mode where memory address is calculated with addition of register operand and signed 16-bit immediate

· Most instructions operate on two register operands (or one register and a constant), and place the result in a third register

· 32-entry or narrow 16-entry general purpose register file

· Branch delay slot for keeping pipeline as full as possible

· Support for separate instruction and data caches/MMUs (Harvard architecture) or for unified instruction and data caches/MMUs (Stanford architecture)

· A flexible architecture definition that allows certain functions to be performed in either hardware or with assistance of implementation-specific software
· Two external exception (interrupt) and context switch types – fast and superfast
1.6 Introduction

OpenRISC 1000 architecture is completely open architecture. It defines architecture of a family of open source, RISC microprocessor cores. As an architecture, OpenRISC 1000 allows for a spectrum of chip and system implementations at a variety of price/performance points for a range of applications. It is a 32-bit load and store RISC architecture designed with emphasis on speed, simplicity and scalability. OpenRISC 1000 targets mid performance embedded environments.

Performance features include fully 32-bit architecture, powerful virtual memory support, cache coherency, optional SMP and SMT support and support for fast context switching. Architecture defines several features for embedded environments. Most notable are two instruction sets, one with 32-bit and the other with 16-bit instruction sizes, instruction set optimized for embedded environments, configurable number of general purpose registers, configurable cache and TLB sizes, dynamic power management support and space for user provided instructions.

OpenRISC 1000 architecture is a predecessor of more powerful and richful next generation OpenRISC architectures.

Implementions of the OpenRISC 1000 architecture are available in full source from www.opencores.org and are supported with GNU software development tools and with a behavioral simulator. Most OpenRISC implementations are designed modular and vendor independent. They can be interfaced with other open source cores available from www.opencores.org.

Opencores.org encourages third parties to design and market their own implementations of the OpenRISC 1000 architecture.

1.7 Acronyms and Abbreviations

ALU
Arithmetic logic unit

BAT
Block address translation

BIU
Bus interface unit

BTC
Branch target cache

CPU
Central processing unit

EA
Effective address

FPU
Floating-point unit

GPR
General purpose register

MMU
Memory management unit

PTE
Page table entry

R/W
Read/Write

RISC
Reduced instruction set computing

SMP
Symetrical multi-processing

SMT
Simultaneus multi-threading

SPR
Special purpose register

TLB
Translation lookaside buffer

Table 2‑1. Acronyms and Abbreviations

1.8 Conventions

h.mnemonic
Identifies OR16 instruction where instruction is 16 bits wide.

l.mnemonic
Identifies OR32 instruction where instruction is 32 bits wide.

0x
Prefix indicates a hexadecimal number.

rA
Instruction syntax used to identify a general purpose register

REG[FIELD]
Syntax used to identify specific bit(s) of a general or special purpose register. FIELD can be a name of a one or a group of bits or a numerical range constructed from two values separated by a colon.

x
In certain contexts this indicates a don't care.

n
In certain contexts this indicates an undefined numerical value.

Implementation
Actual processor implementing OpenRISC 1000 architecture.

Module
Sometimes refered to as a coprocessor. A unit in implementation usually with some special registers and controlling instructions. It can be defined by the architecture or it can be custom.

Exception
A vectored transfer of control to supervisor software through a exception vector table. A way how a processor can request operating system assistance (division by zero, TLB miss, external interrupt etc).

Privileged
An instruction (or register) that can only be executed (or accessed)

when the processor is in supervisor mode (when SR[SUPV]=1).

Table 2‑2. Conventions

1.9 Numbering

All numbers are decimal or hexadecimal unless otherwise indicated. The prefix 0x indicates hexadecimal number. Decimal numbers don't have any special prefix. Binary and other numbers are marked with their base.

2 Addressing Modes and Operand Conventions

This chapter describes memory addressing modes and memory operand conventions defined by OpenRISC 1000 system architecture.

2.1 Memory Addressing Modes

An effective address is computed by the processor when executing memory access or branch instruction or when fetching the next sequential instruction. If the sum of the effective address and the operand length exceeds the maximum effective address in logical address space, the memory operand is considered to wrap around from the maximum effective through effective address 0.

2.1.1 Register Indirect with Displacement

Load/store instructions using this address mode contain a signed 16-bit immediate which is sign extended and added to the contents of a general-purpose register specified in the instruction.

[image: image1.wmf]Instruction

GPR

Sign Extended Imm

+

Effective Address

Figure 3‑1. Register Indirect with Displacement Addressing

Figure 3‑1 shows how an effective address is computed when using register indirect with displacement addressing mode.

2.1.2 Link Register Indirect

Jump instructions using this address mode use the contents of the LR as an effective address.

[image: image2.wmf]Effective Address

Link Register

Figure 3‑2. Link Register Indirect Addressing

Figure 3‑2 shows how an effective address is generated when using link register indirect addressing mode.

2.1.3 PC Relative

Branch instructions using this address mode contain a signed 26-bit immediate which is sign extended and added to the contents of a Program Counter register.

[image: image3.wmf]Instruction

PC

Sign Extended Imm

+

Effective Address

Figure 3‑3. PC Relative Addressing

Figure 3‑3 shows how an effective address is generated when using PC relative addressing mode.

2.2 Memory Operand Conventions
The architecture defines an 8-bit byte, 16-bit halfword, a 32-bit word and a 64-bit doubleword.

Term
length in Bytes
length in Bits

byte
1
8

halfword (or half)
2
16

singleword (or word)
4
32

doubleword (or double)
8
64

Table 3‑1. Memory Operands

2.2.1 Bit and Byte Ordering

Byte ordering defines how the bytes that make up halfwords, words, doublewords are ordered in memory. To simplify OpenRISC implementations architecture specifies as default byte ordering the most significant byte (MSB) ordering, or big endian as it is sometimes called. But implementation can support least significant byte (LSB) ordering if they implement byte reording hardware. Reordering is enabled with bit SR[LEE].

The figures below illustrate the conventions for bit and byte numbering within various width storage units. These conventions hold for both integer data and floating-point data, where the most significant byte of a floating-point value holds the sign and at least the start of the exponent.

Table 3‑2 shows how bits and bytes are ordered in a halfword.

Bit 15

Bit 8
Bit 7

Bit 0

MSB
LSB

Byte address 0
Byte address 1

Table 3‑2. Default Bit and Byte Ordering in Halfwords
Table 3‑3 shows how bits and bytes are ordered in a singleword.

Bit 31

Bit 24

Bit 7

Bit 0

MSB

LSB

Byte address 0
Byte address 1
Byte address 2
Byte address 3

Table 3‑3. Default Bit and Byte Ordering in Singlewords
Table 3‑4 shows how bits and bytes are ordered in a doubleword.

Bit 63

Bit 56

MSB

Byte address 0
Byte address 1
Byte address 2
Byte address 3

Bit 7

Bit 0

LSB

Byte address 4
Byte address 5
Byte address 6
Byte address 7

Table 3‑4. Default Bit and Byte Ordering in Doublewords

2.2.2 Alignment and Misaligned Accesses

A memory operand is naturally aligned if its address is integral multiple of the operand length. Implementation might support accessing unaligned memory operands but default behavioral is that accesses to unaligned operands result in alignment exception. See chapter “Exception Model” on page 23 for information on alignment exception.

Operand
Length
addr[3:0] if aligned

Byte
8 bits
xxxx

Halfword (or half)
2 bytes
xxx0

Singleword (or word)
4 bytes
xx00

Doubleword (or double)
8 bytes
x000

Table 3‑5. Memory Operand Alignment

OR32 instructions are four bytes long and word-aligned. OR16 instructions are two or more bytes long and always halfword-aligned.

Register Set

2.3 Features

OpenRISC 1000 register set includes the following principal features:

· thirtytwo or sixteen 32-bit general-purpose registers – OpenRISC 1000 implementations optimized for use in FPGAs and ASICs in embedded and similar environments might use only the first sixteen of all thirtytwo registers.

· thirtytwo 64-bit floating-point registers.

· all other registers are special-purpose registers defined for each module separately and accessible through mtsr/mfsr instruction pair

2.4 Overview

An OpenRISC 1000 processor includes several types of registers: general-purpose and special-purpose user-level registers, system control/status registers and module dependent registers.

General-purpose and special-purpose user-level registers are accessible both in user mode and supervisor mode of operation. System control registers are accessible only in supervisor mode of operation (SR[SUPV]=1).

Module dependent registers are usually accessible only in supervisor mode but not necessary. For architecture-defined modules accessibility is defined in this manual. For custom modules not covered by this manual accessibility is defined in documentation accompanying those modules.

2.5 Special Sixteen GPRs Support

Programs can be compiled with upper sixteen registers set as fixed registers. Such programs are also executable on normal implementation with thirtytwo registers but not vice versa. This feature is quite useful since customers will move from less powerful OpenRISC implementations with sixteen registers to more powerful thirtytwo register OpenRISC implementations.

It is also possible to run code compiled for thirtytwo register implementation on OpenRISC implementations with just sixteen registers since in this case all instructions that access upper sixteen registers are traped with register range exception. Emulation of upper sixteen registers is left to the register range exception handler routine and to implementation specific hardware support.

[image: image4.wmf]Supervisor Level Registers

User Level

Registers

General Purpose

Registers

GPR0 - GPR31

Floating-Point

Registers

FPR0 - FPR15

Condition Code

Register -

CCR

System Control

Link Register

LR

Count Register

CTR

Supervision

Register -

SR

PC Saved

Register -

PCSR

Exception EA

Register -

EEAR

Data MMU

Module

Data MMU

Control Register

DMMUCR

Data TLB

Registers

DTLB

0

 - DTLB15

Instruction MMU

Module

Instruction MMU

Control Register

IMMUCR

Instruction TLB

Registers

ITLB

0

 - ITLB15

Data Cache

Module

Data Cache

Control Register

DCCR

Data TLB

Registers

DCR

0

 - DCR15

Instruction Cache

Module

Instruction Cache

Control Register

IMMUCR

Instruction Cache

Registers

IC

0

 - IC15

Time Base Module

Time Base

Control Register

TBCR

Time Base Low

Register -

TBLR

Time Base High

Register -

TBHR

Debug Module

Insn Breakpoint

Address Register

IBAR

Data Breakpoint

Address Register

D

BAR

Debug Status

Register -

DSR

Performance

Monitor Module

Performance

Monitor

Registers

PMR0 - PMR3

Performance

Monitor Control

Register -

PMC

R

[image: image5.wmf]MMU

CPU Core

32-Bit Effective Address

36-Bit Virtual Address

4-Bit Context ID

CID

(4 bit)

3

0

Page Index

(32-PS bit)

Page Offset

(PS bit)

31

PS

0

PS-1

Page Index

(32-PS bit)

Page Offset

(PS bit)

31

0

CID

(4 bit)

35

32

PS

PS-1

TLB

Virtual Page Number (VPN)

External BIU

32-Bit Physical Address

Physical Page Number

(32-PS bit)

Page Offset

(PS bit)

31

0

PS

PS-1

User Level Registers

2.5.1 General-Purpose Registers (GPRs)

The thirtytwo 32-bit general-purpose registers are labeled R0-R31. They hold integer data or memory pointers used by instructions. Table 4‑1 contains a list of general-purpose registers and functions for which they are used. The GPRs are accessed as source and destination registers in the instruction syntax.

Register

r31
r30

Function

SAV10
TMP10

Register
R29
R28
r27
r26
r25
r24

Function
SAV9
TMP9
SAV8
TMP8
SAV7
TMP7

Register
R23
R22
r21
r20
r19
r18

Function
SAV6
TMP6
SAV5
TMP5
SAV4
TMP4

Register
R17
R16
r15
r14
r13
r12

Function
SAV3
TMP3
SAV2
TMP2
SAV1
TMP1

Register
R11
r10
r9
r8
r7
r6

Function
RVAL
SAV0
TMP0
LR
ARG4
ARG3

Register
R5
r4
r3
r2
r1
r0

Function
ARG2
ARG1
ARG0
FP
SP
Zero

Table 4‑1. Lower and Upper Parts of General-Purpose Registers

R0 is used as a constant zero. Whether is R0 actually hardwired to zero is implementation dependent. R0 should never be used as a destination register. Functions of other registers are explained in chapter “Application Binary Interface” on page 30.

Implementation may have several sets of GPRs and use them as shadow registers, switching between them whenever a new exception occurs. Current set is identified with SR[CID] value.

Implementation is not required to initialize GPRs to zero during reset procedure. It is a responsibility of a reset exception handler to initialize GPRs to zero if that is necessary.

2.5.2 Floating-Point Registers (FPRs)

The thirtytwo floating-point registers are 64 bits wide and labeled FPR0–FPR31. Table 4‑2 contains a list of these floating-point registers. The FPRs are accessed as source and destination registers in the floating-point instructions. See chapter “Application Binary Interface” on page 30 for information on floating-point data types.
Register

FPR31
FPR30
FPR29
FPR28

REGISTER
FPR27
FPR26
FPR25
FPR24
FPR23
FPR22

Register
FPR21
FPR20
FPR19
FPR18
FPR17
FPR16

Register
FPR15
FPR15
FPR15
FPR14
FPR13
FPR12

REGISTER
FPR11
FPR10
FPR9
FPR8
FPR7
FPR6

Register
FPR5
FPR4
FPR3
FPR2
FPR1
FPR0

Table 4‑2. Floating-Point Registers

2.5.3 Condition Code Register (CCR)

Condition code register is a 32-bit special-purpose user-level register accessible with mtsr/mfsr instruction pair.

Flag named FLAG is set by sfXX instructions as a result of a compare operation. Flag named CARRY is set by arithmetic operations as a result of a carry out and used with addic instruction. Flag named OVERFL is set by arithmetic operations when overflow occurs.

Bit
31-3
2
1
0

Identifier
Reserved
OVERFL
CARRY
FLAG

Reset
0
0
0
0

R/W
Read Only
R/W
R/W
R/W

FLAG
Conditional branch flag

0 FLAG flag was cleared by sfXX instructions

1 FLAG flag was set by sfXX instructions

CARRY
Carry flag

0 No carry out produced by last arithmetic operation

1 Carry out was produced by last arithmetic operation

OVERFL
Overflow flag

0 No overflow occured during last arithmetic operation

1 Overflow occured during last arithmetic operation (might even result in a overflow exception)

Table 4‑3. CCR Field Descriptions

2.5.4 Link Register (LR) (obsolete; will be removed)
The link register is a special-purpose user-level register accessible with mtsr/mfsr instruction pair. It has a width of logical addresses and in OpenRISC implementations with 32-bit logical address space is a 32-bit register.

It supplies the logical branch target address for bflr/bnflr/jlr instructions and is used to hold the logical address of instruction that follows a jal instruction. Lower two bits are ignored.

2.5.5 Count Register (CTR) (obsolete; will be removed)
The count register is a special-purpose user-level register accessible with mtsr/mfsr instruction pair. It has a width of logical addresses and in OpenRISC implementations with 32-bit logical address space is a 32-bit register.

It holds a loop count that can be decremented during execution of sfXX instructions with appropriately coded CNT field. When the condition encoded in CNT field of sfXX instruction is meet then a FLAG flag is set.

2.6 Supervisor Level Registers

2.6.1 Supervision Register (SR)

The supervison register is a 32-bit special-purpose supervisor-level register accessible with mtsr/mfsr instruction pair only in supervisor mode.

It defines the state of the processor.

Bit
31-28
27-8
7

Identifier
CID
Reserved
LEE

Reset
0
0
0

R/W
R/W
Read Only
R/W

Bit
6
5
4
3
2
1
0

Identifier
IME
DME
ICE
DCE
EIR
EXR
SUPV

Reset
0
0
0
0
0
0
1

R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W

SUPV
Supervisor Mode

0 Processor is in User Mode

1 Processor is in Supervisor Mode

EXR
Exception Recognition

0 Exceptions are not recognized

1 Exceptions are recognized

EIR
External Interrupt Recognition

0 External Interrupts are not recognized

1 External Interrupts are recognized

DCE
Data Cache Enable

0 Data Cache is not enabled

1 Data Cache is enabled

ICE
Instruction Cache Enable

0 Instruction Cache is not enabled

1 Instruction Cache is enabled

DME
Data MMU Enable

0 Data MMU is not enabled

1 Data MMU is enabled

IME
Instruction MMU Enable

0 Instruction MMU is not enabled

1 Instruction MMU is enabled

LEE
Little Endian Enable

0 Little Endian (LSB) byte ordering is not enabled

1 Little Endian (LSB) byte ordering is enabled

CID
Context ID

0-15 Current Processor Context

Table 4‑4. SR Field Descriptions

2.6.2 PC Saved Register (PCSR)

2.6.3 Exception EA Register (EEAR)

2.6.4 Instruction/Data MMU Modules Registers

2.6.5 Instruction/Data Cache Modules Registers

2.6.6 Performance Monitor Module Registers

2.6.7 Debug Module Registers

2.6.8 Time Base Module Registers

2.6.9 Custom Modules

2.7 List of All Special-Purpose Registers

Special-purpose registers of all modules are grouped into sixteen groups. Each group can have different register address decoding depending on a maximum theorethical number of registers in that particular group. One group can contain registers from several different modules. In register address decoding it is also used SR[SUPV] bit since some registers are accessible only in supervisor mode. Instructions for reading and writing registers are mtsr and mfsr.

group
module description

0
System Control and Status Registers

1
Data MMU (in case of a single unified MMU groups 1 and 2 decode in a single set of registers)

2
Instruction MMU (in case of a single unified MMU groups 1 and 2 decode in a single set of registers)

3
Data Cache (in case of a single unified cache groups 3 and 4 decode in a single set of registers)

4
Instruction Cache (in case of a single unified cache groups 3 and 4 decode in a single set of registers)

5
Performance Monitor Unit

6
Debug Unit

7
Time Base Unit

8-11
Reserved for future use

12-15
Custom modules

Table 4‑5. List of Groups and Modules

OpenRISC 1000 implementation is required to implement at least special-purpose registers from group 0. All others groups are optional and registers from these groups are implemented only if the implementation has a coresponding module. Which modules are implmeneted can be read from MDLCFGR register in group 0.

Group
Register Number
Register Name
Access
Description

0
1
CTR
User/Supervisor
Count Register (obsolete)

0
2
LR
User/Supervisor
Link Register (obsolete)

0
3
PCSR
Supervisor
PC Saved Register

0
4
SR
Supervisor
Supervision Register

0
5
MDLCFGR
Supervisor
Module Configuration Register

0
6
EEAR
Supervisor
Exception EA Register

Table 4‑6. List of All Special-Purpose Registers

Instruction Set

This chapter describes OR32 and OR16 instruction sets.

2.8 Features

OpenRISC 1000 instruction set includes the following principal features:

· Simple and uniform-length instruction formats featuring two different Instruction Set Architectures (ISA)

· OR32 Instruction Set with 32 bits wide instructions aligned on 32-bit boundaries in memory operating on 32 bits and 64 bits data

· OR16 Instruction Set with 16 bits wide instructions aligned on 16-bit boundaries in memory operating on 32 bits data

· Reserved opcodes for floating-point and vector instructions

· Reserved opcodes for custom instructions

· Instructions divided into instruction classes where only the basic classes are required to be implemented in OpenRISC 1000 implementation

2.9 Overview

OpenRISC 1000 instructions belong to one of the following ISAs:

· OR32:

· integer instructions

· floating-point instructions

· vector instructions

· load and store instructions

· program flow instructions

· module control and supervisor-level instructions

· OR16:

· integer instructions

· load and store instructions

· program flow instructions

· module control and supervisor-level instructions

Instructions in each ISA are also split into instruction classes according to implementation importance:

· user-level basic class

· user-level recommended class

· user-level optional class

· supervisor-level basic class

· supervisor-level optional class

· several module and implementation dependent classes including custom class

· illegal class

OR32
OR16
ISA

Class

Basic load/store, integer, program flow control instructions
Basic load/store, integer, program flow control instructions
User-level basic class

Additional highly recommended integer arithmetic instructions, floating-point and vector instructions
Additional highly recommended integer instructions
User-level recommended class

Rarely used integer, floating-point or vector instructions
Rarely used integer instructions
User-level optional class

Move from/to special registers, rfe
Move from/to special registers, rfe
Supervisor-level basic class

Implementation specific instructions defined in architecture for memory management, context switch etc.
Implementation specific instructions defined in architecture for memory management, context switch etc.
Supervisor-level optional class

Implementation and module specific instructions defined in implementation documentation including custom instructions
Implementation and module specific instructions defined in implementation documentation including custom instructions
Module and implementation dependent and custom classes

Reserved and illegal opcodes
Reserved and illegal opcodes
Illegal class

Table 5‑1. OpenRISC 1000 Instruction Sets and Classes
2.10 OR32

2.11 OR16

Exception Model

This chapter describes exception mechanism, exception types and their handling.

2.12 Introduction

Exception mechanism allows the processor to change to supervisor state as a result of external signals, errors, or unusual conditions arising in the execution of instructions. When exceptions occur, information about the state of the processor is saved to certain registers and the processor begins execution at the address predetermined for each exception. Processing of exceptions begins in supervisor mode.

OpenRISC 1000 defines special support for fast exception processing also called superfast context switch support. This allows very rapid interrupt processing. It is achieved with shadowing general-purpose and some special registers.

Architecture requires that all exceptions are handled in strict order with respect to the instruction stream. When an instruction-caused exception is recognized, any unexecuted instructions that appear earlier in the instruction stream are required to complete before the exception is taken.

Exceptions can occur while an exception handler routine is executing, and multiple exceptions can become nested. Support for fast exceptions allows fast nesting of exceptions until all shadowed registers are used.

2.13 Exception Classes

All exceptions can be described as precise or imprecise and either synchronous or asynchronous. Synchronous are caused by instructions and asynchronous are caused by events external to the processor.

Type
Exception

Asynchronous/nonmaskable
Bus Error

Reset

Asynchronous/maskable
External Interrupt

Synchronous/precise
Instruction-caused exceptions excluding floating-point imprecise exceptions

Synchronous/imprecise
Instruction-caused floating-point imprecise exceptions

Table 6‑1. Exception Classes

Current PC is saved to PCSR. If I-TLB, D-TLB miss or one of page fault exceptions EEAR is set with effective address in question. Other registers must be saved by exception handler routine. Processing continues from:

Exception Type
Vector Offset
causing conditions

Reset
0x100
Caused by soft and hard reset.

Bus Error
0x200
The causes are implementation-specific, but typically they are related to bus errors and attempts to access invalid physical address.

Data Page Fault
0x300

Instruction Page Fault
0x400

External Interrupt
0x500

Alignment
0x600

Illegal Instruction
0x700

Priority External Int
0x800
High priority interrupt (superfast context switch)

0x900

0xA00

Register Range
0xB00
Only on OpenRISC implementations with 16 GPRs

System Call
0xC00
(Superfast context switch)

Breakpoint
0xD00

0xE00

0xF00

Reserved
0x1000 - 0x1F00
Reserved for implementation-specific exceptions.

Table 6‑2. Exception Types and causing conditions

2.14 Exception Processing

2.15 Context Switches – Fast and Superfast

Memory Model

Memory Management

This chapter describes the virtual memory and access protection in memory management of OpenRISC 1000 architecture.

2.16 MMU Features

OpenRISC 1000 memory management unit includes the following principal features:

· Support for implementation specific size of logical, virtual and physical address spaces
· Support for variable page sizes
· Powerful page based access protection with support for demand-paged virtual memory
· Support for simultaneous multi-threading (SMT)
2.17 MMU Overview

Translation diagram:

[image: image6.wmf]V

0

MC

1

CI

2

WB

3

OO

4

A

5

D

6

U1

7

U2

8

Physical Page Number

(32-PS bit)

31

PS

PP Index

(3 bit)

9

11

PTE:

Each PTE is 4 bytes in size. Enough?

[image: image7.wmf]Supervisor Level Registers

User Level

Registers

General Purpose

Registers

GPR0 - GPR31

Floating-Point

Registers

FPR0 - FPR15

Condition Code

Register -

CCR

System Control

Link Register

LR

Count Register

CTR

Supervision

Register -

SR

PC Saved

Register -

PCSR

Exception EA

Register -

EEAR

Data MMU

Module

Data MMU

Control Register

DMMUCR

Data TLB

Registers

DTLB

0

 - DTLB15

Instruction MMU

Module

Instruction MMU

Control Register

IMMUCR

Instruction TLB

Registers

ITLB

0

 - ITLB15

Data Cache

Module

Data Cache

Control Register

DCCR

Data TLB

Registers

DCR

0

 - DCR15

Instruction Cache

Module

Instruction Cache

Control Register

IMMUCR

Instruction Cache

Registers

IC

0

 - IC15

Time Base Module

Time Base

Control Register

TBCR

Time Base Low

Register -

TBLR

Time Base High

Register -

TBHR

Debug Module

Insn Breakpoint

Address Register

IBAR

Data Breakpoint

Address Register

D

BAR

Debug Status

Register -

DSR

Performance

Monitor Module

Performance

Monitor

Registers

PMR0 - PMR3

Performance

Monitor Control

Register -

PMC

R

PP Index: index to an array of registers for page protection. Each page protection policy specifies RWX bits for supervisor and for user mode (so 6 bits per policy, 8 possible policies).

U2, U1: used by operating system for what ever reason.

D: dirty (page will have to be written back to swap and not simply discarded from physical memory)

A: accessed (if page is accessed; a hint to OS which pages to replace when new pages must be brought into physical memory)

OO: Out-of-Order accesses (load only? store only? both?)

WB: controls cache operations: write back type of caches else write through caches

CI: controls cache operations: cache inhibit

MC: memory coherency (or should we call it cache coherency)

V: valid

Cache Model and Memory Coherency

Application Binary Interface

2.17.1 Fundamental Types

2.18 Aggregates and Unions
2.19 Register Usage

2.20 Calling Conventions

2.20.1 Stack Frame

2.20.2 Argument Passing

2.20.3 Return Values

2.21 Operating System Interface

2.22 Position-Independent Code

2.23 ELF

2.23.1 Sections

2.23.2 Relocation

2.24 A.OUT

2.24.1 Sections

2.24.2 Relocation

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

Figure � STYLEREF 1 \s �4��� SEQ Figure * ARABIC \s 1 �1�. OpenRISC 1000 Programming Model - Registers

Copyright (C) 2000 OPENCORES.ORG and Authors

This document is free; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

[image: image8.wmf]MMU

CPU Core

32-Bit Effective Address

36-Bit Virtual Address

4-Bit Context ID

CID

(4 bit)

3

0

Page Index

(32-PS bit)

Page Offset

(PS bit)

31

PS

0

PS-1

Page Index

(32-PS bit)

Page Offset

(PS bit)

31

0

CID

(4 bit)

35

32

PS

PS-1

TLB

Virtual Page Number (VPN)

External BIU

32-Bit Physical Address

Physical Page Number

(32-PS bit)

Page Offset

(PS bit)

31

0

PS

PS-1

[image: image9.wmf]V

0

MC

1

CI

2

WB

3

OO

4

A

5

D

6

U1

7

U2

8

Physical Page Number

(32-PS bit)

31

PS

PP Index

(3 bit)

9

11

_1016540111.vsd
Link Register�

Effective Address�

_1016548864.vsd
User Level Registers�

Floating-Point Registers
FPR0 - FPR15�

General Purpose Registers
GPR0 - GPR31�

Condition Code Register - CCR�

Link Register
LR�

Count Register
CTR�

Supervisor Level Registers�

System Control�

Supervision Register - SR�

PC Saved Register - PCSR�

Exception EA Register - EEAR�

Data MMU
Module�

Data MMU Control Register DMMUCR�

Data TLB Registers
DTLB0 - DTLB15�

Instruction MMU Module�

Instruction MMU Control Register IMMUCR�

Instruction TLB Registers
ITLB0 - ITLB15�

Data Cache
Module�

Data Cache Control Register DCCR�

Data TLB Registers
DCR0 - DCR15�

Instruction Cache Module�

Instruction Cache Control Register IMMUCR�

Instruction Cache Registers
IC0 - IC15�

Time Base Module�

Time Base Control Register
TBCR�

Time Base Low
Register - TBLR�

Time Base High
Register - TBHR�

Debug Module�

Insn Breakpoint Address Register
IBAR�

Data Breakpoint Address Register DBAR�

Debug Status
Register - DSR�

Performance Monitor Module�

Performance Monitor
Registers
PMR0 - PMR3�

Performance Monitor Control Register - PMCR�

_1016549586.vsd
Page Index
(32-PS bit)�

Page Offset
(PS bit)�

31�

32-Bit Effective Address�

CPU Core�

�

MMU�

Page Index
(32-PS bit)�

Page Offset
(PS bit)�

36-Bit Virtual Address�

CID
(4 bit)�

PS�

PS�

0�

3�

4-Bit Context ID�

0�

31�

PS-1�

PS�

0�

CID
(4 bit)�

35�

32�

TLB�

Virtual Page Number (VPN)�

External BIU�

32-Bit Physical Address�

�

PS-1�

PS-1�

Physical Page Number
(32-PS bit)�

Page Offset
(PS bit)�

31�

0�

_1016540441.vsd
Instruction�

PC�

Sign Extended Imm�

+�

Effective Address�

_1016540076.vsd
Instruction�

GPR�

Sign Extended Imm�

+�

Effective Address�

_1004944254.vsd
Physical Page Number
(32-PS bit)�

V�

31�

MC�

1�

CI�

2�

WB�

3�

PP Index
(3 bit)�

PS�

0�

9�

OO�

4�

A�

5�

D�

6�

U1�

7�

U2�

8�

11�

