NNARM Architecture
Specification

version 1.18

Writen By ShengYu Shen

nnARM From NUDT
is not ARM 2001 81
Proof Reading By Clayton John

2001.8.2

NOTE

This document describes the architecture of the nnARM processor core.
Every major release of the nnARM has only one such document. Any
enhancements of nnARM v1.18 will not be included in this document. For
documentation of newer changes and features, please refer to newer
versions of the documentation and the comments in the source code.

Release Log

VvV1.00 2001/4/11
V1.10 2001/6/1
V1.1 2001/6/10
V1.18 2001/8/1

nnARM

Not aN ARM

1.Introduction

The nnARM project is a development project started on March 24,
2001. The purpose of this project is to develop a synthesizable high
performance embedded processor core that can execute the ARM v4T
instruction set.

At this time, the v1.18 of this soft core has been completed. It
contains the following components:

1. a behavioral description of a memory controller.

2. Behavioral descriptions of an instruction cache controller and
a data cache controller.
a RTL synthesizable instruction prefetch buffer.
a RTL synthesizable instruction fetch component.
a RTL synthesizable decoder for Thumb instructions
a RTL synthesizable decoder for ARM.
a RTL synthesizable full function ALU that can support all ALU
operations used in the ARM instruction set.
8. a RTL synthesizable pipeline “mem” stage that can perform

load and store operations.

9. a RTL synthesizable register file.
10. a RTL synthesizable interrupt processing module

NoOook

The whole ARM v4T instruction set is summarized below. All
Thumb instructions are translated into the corresponding ARM
instructions. So, whether a particular Thumb instruction can run
depends on whether the corresponding ARM instruction can run. The
already supported instructions are shown in green, unsupported
instructions in red:

3 Multiple long

4 Single data swap

6 Half word data transfer

8 Block data transfer

10 Coprocessor instructions

Note: The Tomasulo structures have been removed because | can
not manage to deal with the complexity of designing them. Also, | think

that the logic and interconnect resources on a FPGA will be too limited to
justify using such complex structures.

nnARM

Not aN ARM

This documentation is organized in the following way:
Section 1: Introduction.
Section 2: Describes the overall architecture of nnARM.
Section 3: Describes the storage hierarchy of nnARM.
Sections 4-7: Describe the 4 pipeline stages.

nnARM

Not aN ARM

2. Overall architecture

2.1 Structure Introduction
A top-level block diagram of the processor is shown in figure2.1
below.

Processor

I cache D cache Coprocessor

P L,
;

Memory controller

figure 2.1

The processor has separate data and instruction caches. Both
caches are coded in behavioral level Verilog code descriptions. The
detail of both caches will be given in the next section.

The memory controller is also coded as a behavioral description. It
is not part of the current design focus, so a behavioral description is
sufficient for it.

The coprocessor can accept requests from the main processor
through the memory bus. It can distinguish between memory requests
and coprocessor requests. Although the coprocessor interface has been
shown in this diagram, and some consideration has been given to it, it is
not implemented in the current design. It will probably be added later.

The pipeline is very similar to that of DLX or MIPS, It contains only
4 stages: IF ID ALU and MEM. There is no WB stage for register write
back, | have merged it into the MEM stage to simplify the pipeline design.

The first stage is IF (Instruction Fetch). It is describe in IF.v file.lt

fetches one instruction from the prefetch buffer every cycle. This is a so
called “1 issue pipeline.” 2 issue or 4 issue operation is possible, but it

nnARM

Not aN ARM

would seriously increase the complexity of the overall architecture. Also,
areport from ARM states that a two issue pipeline will achieve only a 20%
performance improvement. | think that because the ARM instruction set
is more like a CISC than a common RISC, its code is relatively dense, so
that one instruction word can do more work (on average) than a
comparable RISC instruction word. So a single issue pipeline is should
be sufficient to realize high enough levels of performance.

The second pipeline stage is the ID (Instruction Decode) stage. It is
described in Decoder_ARM.v. In this stage the decoder translates a
single ARM instruction into microinstructions and sends the
microinstructions into the rest of the pipeline structure.

Since the last release, a Thumb decoder has been added. It
translates Thumb instructions into ARM instructions, and feeds them to
the ARM instruction decoder. A Thumb flag in CPSR indicates the
current state. The Thumb decoder is described in the files:
Thumb_2_Arm.v and ThumbDecoderWarper.v

After instruction decode, the microinstructions go to the ALU
(Arithmetic Logic Unit) stage, where the various types of computations
are actually performed, including: and, eor, sub, rsb, add, adc, sbc, rsc,
tst, teq, cmp, cmn, orr, mov, bic, and mvn. Also, at the same time a booth
multipler is coupled with the ALU to perform MUL and MLA operations.
The ALU is described in ALUShell.v.

After the ALU stage has performed the desired operation, it passes
the result and the micro operation to the MEM (MEMory) pipeline stage. In
the MEM stage, load/store operations perform accesses to or from
memory. Also, at the end of this stage all results for the register file are
written back. The MEM stage is described in the file mem.v.

| think | must say a few words about the use of pipeline forwarding.
If instruction n uses register Rn as its destination, and the following
instruction n+1 uses Rn as its source operand, when n completes its ALU
stage, and n+1 is ready to begin its ALU stage, the results of n have not
yet been written into Rn! Since instruction n+1 requires the the results of
instruction n to compute its result, then a forwarding scheme must be
performed to pass the n result directly to instruction n+1.

The following figure illustrates this more clearly.

nnARM

Not aN ARM

Instruction
cache
A
Fetched instruction Fetched instruction
cache block cache block address
A 4
Instruction
Prefetch buffer
A
Fetched instruction Fetched instruction address
A 4
IF Register
il »
N d file
Interrupt PC read and write 4
request . .
nstruction .
Three register read request
’ Interrupt 4
—_p| priority —» ID
—»| module >
. . PSR
Micro Micro Three < .
. . . . resgisters
operation operation immediate .
Three register read bus A
for ALU for MEM operand
A 4 A 4
ALU <
. ALU result .
Micro Forwarding from
. and other .
operation ALU output to Forwarding
operand used .
for MEM ALU input from MEM
by MEM
to ALU
A 4
Y MEM
Dcache |7 7
Write
Write result PSR
register
figure 2.2

nnARM

Not aN ARM

2.2 Memory Endian Type (“Endianness’)

This processor current only supports little endian access. A
WORD is stored so that the least significant byte is at the lower address.
The address of the WORD is the address of its least significant byte. The
memory organization is shown below.

Big endian access is not supported now, and | do not have any
plans to support it.

The nnARM uses BYTE addressing, so to move to the next word
you would add 4 to the address.

. word
Higher address
31 24 23 16 15 8 7 0 address
11 10 9 8 8
7 6 5 4 4
3 2 1 0 0

Lower address

figure 2.3
2.3 Address Bus Width

The nnARM is a brand new design, so it does not need to maintain
backward compatibility. Therefore, only a 32 bit wide address bus is
supported; the 26 bit address bus mode that was used in ARM7
processors is not supported, and | have no plans to support it.

2.4 Processor Modes

The nnARM processor supports six operation modes:

1) User mode: The normal program execution mode

2) FIQ mode: To support a data transfer or channel process

3) IRQ mode: General purpose interrupt handling

4) Supervisor mode: Protected mode for the OS

5) Abort mode: Memory fetch failure

6) Undefined mode: An undefined instruction executed

Mode changes are controlled by software or external interrupts or
exceptions. Most user programs execute in user mode. The other modes
(which are used to handle interrupts or exceptions) are called privileged
modes.

2.5 General Register file

The register file now contains 31 general purpose registers. The
active set of registers is determined by the processor mode.

At any time, 16 registers can be accessed by software. They are R0

nnARM

Not aN ARM

to R15. R15 is the program counter, other registers can all be used as
general purpose registers.

R14 is used to save the next instruction address when a branch
with link instruction is executed.

However, in different modes, the same register number may not

correspond

to same register. The following paragraph explains which

registers can be accessed in the different modes.

User :
FIQ
Supervisor:
Abort :

IRQ :
Undefined:

RO~R15

RO~R7 R8_FIQ~R14_FIQ R15
RO~R12 R13_SVC R14_ SVC R15
RO~R12 R13_ABT R14_ABT R15
RO~R12 R13_IRQ R14_IRQ R15
RO~R12 R13_UND R14_ UND R15

2.6 PSR Register file

The current processor state is saved in the CPSR (Current
Processor State Register), the previous processor state is saved in
SPSR_XXX (where XXX corresponds to the processor mode). So there
are 6 PSR registers total.

The format of PSR registers is show below:

Bit: Function

31: Negative

30: Zero

29: Carry

28: Overflow

7: IRQ disable

6: FIQ disable

5: Thumb state

4:0 processor mode
the processor mode in 4:0 is show below:
10000 : User
10001: FIQ

10010: IRQ

10011: Supervisor
10111: Abort
11011: Undefined

2.7 Exceptions
Now there are three types of exceptions supported. They are:

1
2
3

Software interrupt (SWI)
Fast interrupt request (FIQ)
Normal interrupt request (IRQ)

For details of exception, please refer to following chapters.

nnARM

Not aN ARM

3.Storage Hierarchy

The storage hierarchy of the nnARM includes several levels. The
first level is the instruction prefetch buffer and the load/store component
in the MEM stage. The next level is the cache, including instruction cache
and data cache. The lowest level is the memory controller. The following
figure 3.1 illustrates this:

Instruction MEM
prefetch buffer load/store
Instruction Data

cache cache

Memory Controller

figure 3.1

3.1 Memory controller

The current nnARM does not really implement a memory controller,
it only has a behavioral description of one, so therefore a description the
memory controller is not very valuable. | must say that | do not know very
much about memory and memory controllers. So this memory controller
will eventually be replaced by a better memory controller. | will not
describe it in detail.

The memory controller has a 32 bit bidirectional databus, a 32 bit
address bus input, a read/write flag input, a memory request signal input,
a byte/word access flag input, a sequential/non-sequential access mode
flag input. And a wait signal output.

In a word, it is very simple and not suited for real applications. Do
not pay too much attention to it.

3.2 Instruction cache

The instruction cache has 256 bytes (do not laugh, | do not know
how to describe a large array of register words that can be randomly
accessed and that can exist in combinational logic). If described as
separate registers, the .v file would be too large...

In a large cache, the number of tag fields is also very large, and to

nnARM

Not aN ARM

compare each one with the current input address (“set associativity”), |
must use combinational logic. The tag fields must be listed in the
sensitivity list. But the synthesis tools do not allow room for writing the
whole name, it tells me to list all the fields separately.

Who can tell me how to solve it?

The instruction cache has 4 sections, every section contain 4 lines,
every line containing 4 words.

The Address[5:4] selects the section, and then the cache controller
compares the entire Address[31:6] with each tag field of the 4 lines in this
section, if a match is detected then Address[3:2] is used to select the
corresponding word in this line.

If no tag field matches the Address[31:6], then the wait signal is
brought high to stop the requester and go to the external memory to get
the requested cache block.

3.3 Instruction prefetch

The instruction prefetch buffer contains 8 entries. Every entry can
contain one 32 bit instruction.

The instruction prefetch buffer has been separated into two parts:
the first 4 instructions and the last 4 instructions. When the processor is
accessing the first half, the prefetch logic will go to instruction cache to
fetch the other half. The other half is filled in like manner.

If the requested address does not fall within the address range of
the buffer, then the prefetch logic will enable the wait signal to stop the
requester and go to cache to fetch the desired cache block.

3.4 Data cache

The data cache is the same size as the instruction cache.

The data cache has 4 sections, every section containing 4 lines,
every line containing 4 words.

The Address[5:4] selects the section, and then the cache controller
compares the entire Address[31:6] with each tag field of the 4 lines in this
section. If a match is found, then Address[3:2] is used to select the
corresponding word in this line.

If a cache miss occurs, then the controller will determine if there is
a blank line in this section,

if so, then it will go to memory to fetch the desired cache block into
this line.

If not, then it will see if there is a line that is not dirty,

if yes, then it will go to memory to fetch desired cache block
into this line.

If not, it will select a random line to write back to memory
and then read in the desired cache block into this line.

3.5 A word about future cache and memory systems
To use nnARM in a real application environment, a suitable cache
and memory system must be developed. So we developed a new model

for future development, shown in Figure 3.2.

Not aN ARM

First, the nnARMCore will be separate from the cache and memory
system. It uses a very simple interface to access the Bus2Core module. It
treats Bus2Core as a register file with wait signal.

Second, Bus2Core acts as a protocol translator between
nnARMCore and the special type of bus (such as AMBA CoreConnect or
WishBone).

nnARMCore

Simple protocol independent of bus

Bus2Core Memory
controller

AMBA CoreConnect or WishBond

figure 3.2

Third, There can be many possible types of Bus2Core.

For the most simple case, Bus2Core can just translate signals
between nnARMCore and the bus. No Cache, no buffer. The greatest
advantage of this type of implementation is: SIMPLICITY. This will make
it very suitable for simple applications that do not require high
performance. But for high performance applications, it is not a good
choice.

For a complex case, it can contain cache, MMU (memory
management unit), TLB (translation lookaside buffer) and so on. This will
make it support most advanced features found in modern processors.

This module is currently under development by Mian Yousaf from
Pakistan.

nnARM

Not aN ARM

4 Pipeline Overall description

This chapter will describe the overall pipeline structure.

4.1 Pipeline interlock

Because nnARMCore is a multiple stage pipeline design, there may
be some conditions which make the pipeline stall (such as a load
instruction waiting for its result from memory). In such a case the
instructions that precede the stalled instruction must continue to run and
write their results to registers. But all instructions that follow the stalled
one (including this stalled instruction) must stop to wait.

So a pipeline interlock has been implied for use in nnARMCore.
Every stage of the pipeline must include some /0 port to support
pipeline interlocking. These ports are listed below:

In_CanNextStageGo This signal comes from the next pipeline
stage’s Out_CanlGo output port. It indicates whether that next stage can
continue to run or not.

Out_CanlGo This signal goes to the previous pipeline
stage’s In_CanNextStageGo. It tells the previous stage that whether this
stage can continue to run or not.

When a stage stalls, it will make Out_CanlGo==1’b0. This will
make the previous stages stall. So a stall in one stage will make all its
previous stage to stall.

Various stages have various names for these two ports:

In_CanNextStageGo Out _CanlGo
IF in_IDCanGo No
ID in_ALUCanGo in_IDOwnCanGo
ALU in_MEMCanGo out_ALUOwnCanGo
MEM No out_ MEMOwnCanGo

These signals make the entire pipeline run in a consistent way.

4.2 Pipeline register refresh

Because nnARMCore is a multiple stage pipeline design, when an
instruction has computed its result it cannot write to the register file
immediately. It must wait until it reaches the MEM stage. But before it
writes its result, another instruction that needs this result may have
begun to run. So if we do not take care of this case, then the latter
instruction will read an erroneous register value. The following example
illlustrates this idea:

nnARM

Not aN ARM

ADD r0,r1,r2 [Ir0=r1+r2
2 ADD r3,r0,r1 lIr3=r0+r1

When 1 reaches the end of the ALU stage, it has got the new value
for r0, but has not written it to r0. (It must wait until it reaches the end of
the MEM stage to update r0.) But now instruction 2 has reached the end
of the ID stage and is about to be latched in the pipeline register of the
ALU stage. If we do not take care of this, instruction 2 will use the old
value of r0 from the register file and compute an erroneous value for r3.

A forwarding feature has been built to deal with cases of data
forwarding. Assume we are now dealing with the left operand of current
instructions, and the left operand comes from Rx (of course It may also
come from an immediate value-- in that case Rx has no meaning.)

If (Left operand comes from an immediate value)
Directly read the left operand bus

Else if (ALU stage main thread has Rx as its target)
Read ALU main thread’s result

Else if (ALU stage simple thread has Rx as its target)
Read ALU simple thread resulit

Else if (MEM stage main thread has Rx as its target)
Read MEM main thread result

Else if (MEM stage simple thread has Rx as its target)
Read MEM simple thread result

Else
Read left operand bus for register value

The refresh of the right operand and the third operand is done in
the same way.

The CPSR and SPSR registers must also be refreshed in the
pipeline similarly. And when any component of nnARM needs a
condition flag (such as carry, negative, zero, overflow, interrupt mask,
fast interrupt mask and thumb state), they also need the fresh values
instead of the old values in the status register file.

nnARM

Not aN ARM

5 Instruction Fetch Pipeline Stage(IF)

The IF stage performs the following operations:

1. Increment PC to next instruction address normally.

2. Deal with branch requests from the ALU or MEM stage.

3. Send out PC to fetch instructions from the prefetch buffer.

These operations are described in the following section.

5.1 Increment PC

The IF logic has 1 register read port and 1 register write port from
the general register file. These ports are always active and the register
number is set to R15 for these ports.

A simple Adder increments the PC value coming from the read port,
and sends the result to the write port.

5.2 Branch

When a branch instruction or an ALU instruction with the PC as its
destination reaches the ALU stage, it requires a change of PC.

At the same time, if a load instruction with the PC as its destination
reaches the MEM stage, it also requires a change of PC.

The request coming from MEM will be processed first, the address
from MEM will be loaded into PC. At the same time, a signal is sent to all
pipeline stages between IF and MEM to clear those pipeline registers.
This is because a load to PC instruction means the instructions following
the load instruction will not be executed.

If there is no request from the MEM stage, and the ALU stage wants
to change the PC, then all stages between IF and ALU will be cleared.
And the address from ALU will be sent to PC.

5.3 Fetch Instruction

The IF sends the PC value from the register read port to the
prefetch buffer logic.

At the positive edge of the clock, if the wait signal from prefetch
buffer is active, then it means the prefetch buffer can not satisfy the
request now, and the IF must force a blank instruction into the pipeline
and continue to wait.

If the wait signal from prefetch buffer is not active, IF reads the
instruction and feeds it to the decoder.

The following diagram illustrates this.

nnARM

Not aN ARM

PC value from Address come Request come Address come Request come

register file from ALU from ALU from MEM from MEM
«
<
v
. New PC
Instruction

fetch address

figure 5.1

nnARM

Not aN ARM

6 Decoder for ARM Instruction Set(ID)

This release now supports both the Thumb instruction set and the
normal ARM instruction set.

instructions

Normal

Instruction

Decoder

Thumb
L Decoder

Thumb state

Figure 6.1

The Thumb state bit in CPSR selects either instructions coming
directly from the fetch stage or instructions coming from the Thumb
decoder.

The ID stage decodes an ARM instruction into micro operations to
the ALU and MEM stages.

The ALU and MEM stages both have three threads (this “thread” is
not the same as multiple thread processor). One main thread, one simple
thread and one PSR thread. The following figure illustrates more
clearly:

4 >
Main thread Main thread
> >
Simple thread Simple thread
> >
Flip-flop PSR thread Flip-flop PSR thread
Figure 6.2

The main thread performs all computations in the ALU, and
performs all load/store operations in the MEM stage. Finally, it performs

nnARM

Not aN ARM

the first register write operation.

The simple thread performs simple data selection in the ALU stage,
and performs the second register write operation (if it exists) in the MEM
stage.

The PSR thread performs PSR register file write operations.

You will find that only the main thread can stall the pipeline,
because it contains load/store and the most complex operations such as
multiply (The multiply operation is currently done in 1 clock cycle. This
seriously lengthens the clock period, and results in a slow down of the
clock frequency. | will modify it in the future to be a “pipelined multiplier
unit” which will not seriously slow down the clock, because it will not try
to complete the entire multiply in one clock cycle).

When the main thread stalls, then all threads of all stages behind it
stall at the same time.

For details of ALU and MEM stage operation, please refer to the
next two chapters.

The following instructions are supported:
multiply(MLA) and multiply then add(MLA)
branch(B) and branch with link(BL)

PSR transfer(MRS and MSR)

all ALU instructions

single data transfer(LDR/STR)

ahoON=

he following are the instructions not yet supported:
single data swap(SWP)

. block data transfer(LDM/STM)

all coprocessor instructions

software interrupt(SWI)

PN~ H

| will describe how to decode these supported instructions into
micro operations, only the main thread and simple thread are included in
the following figure. The psr thread is described in a separate section:

Instruction ALU main ALU simple MEM main MEM simple
type thread thread thread thread
MUL ALUType_Mul | ALUType_Null | MEMType_Mov | MEMType_Null

Main
MLA ALUType_Mla | ALUType_Null | MEMType_Mov | MEMType_Null
Main
B ALUType Add | ALUType_Null | MEMType_Null | MEMType_Null
BL ALUType_Add | ALUType_MvN | MEMType_Null | MEMType_Mo
extinstruction vSimple
Address
MRS ALUType_Null | ALUType_MvS | MEMType_Null | MEMType_Mo
PSR or vSimple
ALUType_MvC
PSR
MSR No operation except for PSR thread

nnARM

Not aN ARM

Corresponding | ALUType_Null | MEMType_Null | MEMType_Null
lnstructlon ALU operation (for tst,
teq,cmp,cmn)
MEMType_Mov
Main(for other
case)
LDR ALUType_Add | ALUType_Mvl | Varies type of | ALUType_Mov
or when post load Main when
ALUType_Sub index is write back is
depend on type required required
of address
calculate
STR ALUType_Add | ALUType_Mvl | Varies type of | ALUType_Mov
or when post store Main when
ALUType_Sub index is write back is
depending on required required

type of address
calculate

6.1 Operand preparation
The decoder has the duty to send out register read requests to the
register file and send out immediate values. This is the so called operand
preparation feature.
In the most serious case, an instruction may require 3 operands.
For example, an ALU instruction that involves a shift count from a

register.

So the decoder has 3 read channels. | call them first, second and

third read channels. Every channel has the following signals:

1. “read register enable” (goes to the register file) When the
operand comes from a register, this signal will be high, else it
will be low

2. “read register number” (goes to the register file)

3. “forwarding disable” (goes to the ALU stage) If this signal is
true, then forwarding will not be performed on this channel, else
forwarding will use the “freshest” value of this register from the
pipeline.

4. “read out bus” (from the register file to the ALU stage) When
this operand comes from the register file, this bus carries the
corresponding register contents, else this bus carries the

immediate value from the decoder.

The following figure illustrates this more clearly:

nnARM

Not aN ARM

Register file
Read enable and
register number
decoder ALU
\4 >
Read bus
figure 6.3

The PC is a special case. The PC is never read directly from a
register by the decoder. It always goes with the corresponding
instruction. That is to say, any instruction going from IF stage to decoder
stage will carry its own PC. The PCs in the pipeline are never affected by
forwarding.

6.2 PSR thread

Only the following ALU instructions may change the PSR register
file: MUL,MLA and MRS.

In these ALU instructions, there is a S bit that indicates whether
the instruction writes to CPSR.

If the S bit is set, and the destination register is not the PC, then it
must write to CPSR. Therefore, the decoder generates the
ALUPSRType_WriteConditionCode and
MEMPSRType_WriteConditionCode micro operations for the PSR thread.

If the S bit is set, but the destination is the PC, then
ALUPSRType_SPSR2CPSR and MEMPSRType_WriteCPSR micro
operations are generated by the decoder for the PSR thread.

If S bit is not set, no PSR registers are written.

The S bit has the same feature for the MUL and MLA instructions
except that the PC can not act as destination of MUL and MLA.

MRS moves a general purpose register to CPSR or SPSR.
Corresponding micro operations are generated.

nnARM

Not aN ARM

6.3 Signal “out_ALUMisc”

This signal performs some special functions.

out_ALUMisc[31:28]: this field contains the condition code of this
instruction. The ALU stage uses this code to decide whether this
instruction qualifies under the current processor state and can continue
to run.

Out_ALUMisc[0]: when decoding a normal instruction, the third
read channel is used to carry the shift count from the register file or as an
immediate value. But when decoding a store instruction, the shift count
is always a 5 bit wide immediate value, and at the same time the stored
value occupies the third channel. So, under this condition
Out_ALUMisc[0] is high, which puts the shift count in Out_ALUMisc[5:1].

Out_ALUMisc[6]: when decoding a branch or an ALU instruction
that wants to modify the PC, Out_ALUMisc[6] is high.

Out_ALUMisc[7]: when decoding a load to PC, this is high.

6.4 Bubble insertion

In some special cases, the decoder must insert a “bubble” into the
pipeline, or the nnARM will not run correctly.

When there is a load to a general purpose register Rn, and the
following instruction wants to use Rn as its source operand, then if the
following instruction dispatches to the ALU immediately, it will miss the
freshest value of Rn. This is because when it dispatches, the load
instruction is still in the ALU, and is not yet finished.

After inserting a bubble, the decoder must wait until that bubble
goes to the MEM stage. This means that the load instruction has finished
loading and is ready to forward Rn to the following instruction.

6.5 Interrupt Handling

This release now supports interrupts, including normal interrupts
and “fast interrupt requests.”

When an interrupt arises, a special instruction is inserted into the
decoder to generate all the signals that are required to process it. These
signals are very similar to those of the SWI instruction.

Instruction ALU main ALU simple MEM main MEM simple
type thread thread thread thread
SWLIRQ,FIQ | ALUType_Mov | ALUType_MvN | MEMType_Null | MEMType_Mo
extinstruction vSimple

Address

In all these three types of interrupts, the ALU main thread is used
to branch to an interrupt handler written in software. And the MEM main

nnARM

Not aN ARM

thread is not used.
The ALU and MEM simple threads are used to write the return

address to link register (R14).
The PSR thread is used to write the old CPSR into SRSR, and to
write the new CPSR into the CPSR register.

nnARM

Not aN ARM

7 ALU stage

The ALU stage contains three threads: the main thread, the simple
thread and the PSR thread. The following sections describe them.

7.1 Main thread

This thread performs all computations. It supports the following

micro operations:

ALUType_Add
ALUType_Sub
ALUType_And
ALUType_Eor
ALUType_Rsb
ALUType_Adc
ALUType_Sbc
ALUType_Rsc
ALUType_Tst
ALUType_Teq
ALUType_Cmp
ALUType_Cmn
ALUType_Orr
ALUType_Mov
ALUType_Bic
ALUType_Mvn
ALUType_Mul
ALUType_Mia

LeftOperand + RightOperand

LeftOperand — RightOperand

LeftOperand And RightOperand

LeftOperand Eor RightOperand
RightOperand - LeftOperand

LeftOperand + RightOperand + Carry
LeftOperand — RightOperand + Carry - 1
RightOperand - LeftOperand + Carry - 1

As And, but do not write result, only set flags
As Eor, but do not write result, only set flags
As Sub, but do not write result, only set flags
As Add, but do not write result, only set flags
LeftOperand Or RightOperand

RightOperand

LeftOperand And ~RightOperand
~RightOperand

LeftOperand Mul RightOperand
(LeftOperand Mul RightOperand) + ThirdOperand

All these micro operations are sent to the “ALUComb” module.

7.2 ALUComb

LelTmp

switch switch

ComplementResult

[complementary |

-

RightTmp
switch

switcﬂ

ShiftResult

Barrel
shifter
.

in_LeftD d in_Ri
in_LeftOpran in_'l'hirdl]peradq—mghtuperand

nnARM

figure 7.1

Not aN ARM

Figure 7.1 shows the structure of the ALUComb module.

ALUComb supports all ALU operations in the ARM instruction set.

The two main inputs are in_LeftOperation and in_RightOperation. The
in_RightOperation is shifted by the Barrel shifter.

Then, the two switches (or multiplexers) select which will be the left
operation and which will be the right one. This is needed because the
ARM instruction set includes operations of the form: operand1 op
operand2, and also conversely of the form: operand2 op operand1.

Next, to deal with the SUB operation, the twos-complement of
RightTmp is produced.

After that, the two operands are sent to the adder. Other types of
operands such as sub, rsb, sbc and adc are similar to this.

Recently MLA support has been added. Now the two switches near
the adder are used to select which operand will be added when doing
“multiply and add.”

The logic operations are very easily done and are not described here.

7.3 Simple thread

This simple thread is used to perform some simple operations. It
supports the following micro operations:

ALUType_Mvl use left operand as simple thread output
ALUType_Mvr use right operand as simple thread output
ALUType_MvCPSR use CPSR as simple thread output
ALUType_MvVSPSR use SPSR as simple thread output

ALUType_MvNextinstructionAddress
Use address of next instruction as simple thread output

7.4 PSR thread

The PSR thread performs its computation and writes to the PSR
file.

At the same time, because all ARM instructions have a conditional
execution field, all instructions must use forwarding to get the freshest
CPSR status to decide whether they can continue to run before entering
the ALU stage.

7.5 Forwarding
The following program explains how general purpose register
forwarding is performed. Assume that Rn is the source operand:

if(operand comes from immediate value)
read it from corresponding read bus
else if(current ALU main thread wants to write Rn)
forward result from current ALU main thread
else if(current ALU simple thread want to write Rn)
forward result from current ALU simple thread
else if(current MEM main thread want to write Rn)
forward result from current MEM main thread
else if(current MEM simple thread want to write Rn)

nnARM

Not aN ARM

forward result from current MEM simple thread
else
read it from corresponding read bus

Following program explains how CPSR register forwarding is
performed:
If(CPSR is from the current immediate value)
Read in from read bus
Else if(current ALU want to write CPSR)
Read it from ALU
Else if(current MEM want to write SPSR)
Read it from MEM
Else
Read in from read bus

SPSR forwarding is similar.

7.6 Processing the condition field

The most significant 4 bits of an instruction indicate under what
conditions the instruction can continue to run and write its result.

| use the CPSR processed by forwarding to determine if the
instruction can continue to run.

0000 = EQ - Z set (equal)

0001 = NE - Z clear (not equal)

0010 = CS - C set (unsigned higher or same)

0011 = CC - C clear (unsigned lower)

0100 = Ml - N set (negative)

0101 = PL - N clear (positive or zero)

0110 = VS -V set (overflow)

0111 =VC -V clear (no overflow)

1000 = HI - C set and Z clear (unsigned higher)

1001 =LS - C clear or Z set (unsigned lower or same)

1010 = GE - N set and V set, or N clear and V clear (greater or equal)

1011 =LT - N set and V clear, or N clear and V set (less than)

1100 = GT - Z clear, and either N set and V set, or N clear and V

clear (greater than)

1101 = LE - Z set, or N set and V clear, or N clear and V set (less

than or equal)

1110 = AL - always

1111 = NV - never

If an instruction can not continue to run, a bubble is inserted into
the ALU stage and this instruction will disappear. A conditional branch is
also performed in this way.

7.7 Branches

For a branch instruction, it generates a branch request to all
stages between IF and ALU, all stage are cleared by this request signal.

nnARM

Not aN ARM

It also sends out the branch destination address, the IF must
restart to fetch at that address.

nnARM

Not aN ARM

8 MEM stage

The MEM stage contains three threads: the main thread, the simple
thread and the PSR thread.

The main thread performs all load/store operations and writes
loaded values into registers.

The simple thread performs the second register writing(for
example a write back of base address register in load/store instructions).

The PSR thread performs writes to the PSR register file.

8.1 Main thread

The main thread supports the following micro operations:

MEMType_MovMain write main ALU thread result to register
MEMType_MovSimple write simple ALU thread result to register

MEMType_LoadMainWord use main ALU thread result as address to
load a word

MEMType_LoadMainByte use main ALU thread result as address to
load a byte

MEMType_LoadSimpleWord use simple ALU thread result as address
to load a word

MEMType_LoadSimpleByte use simple ALU thread result as address
to load a byte

MEMType_StoreMainWord use main thread ALU result as address to
store a word

MEMType_StoreMainByte use main thread ALU result as address to
store a byte

MEMType_StoreSimpleWord use simple thread ALU result as address
to store a word

MEMType_StoreSimpleByte use simple thread AUL result as address
to store a byte

8.2 Simple thread

The simple thread supports the following micro operations:

MEMType_MovMain write main ALU thread result to register
MEMType_MovSimple write simple ALU thread result to register

8.3 PSR thread

The PSR thread supports the following micro operations:
MEMPSRType_WriteSPSR write freshest SPSR in pipeline to SPSR
register
MEMPSRType_SPSR2CPSR write freshest SPSR in pipeline to CPSR

nnARM

Not aN ARM

MEMPSRType_WriteCPSR write freshest CPSR in pipeline to CPSR
register

MEMPSRType_WriteConditionCode write condition code only to CPSR
register, because of forwarding, this is the same as
MEMPSRType_WriteCPSR

8.4 Change of PC

When the current micro operation is a load to the PC, then after the
load is finished, the new PC must be sent to the IF stage. At the same
time, a branch request must be sent to all stage between IF and MEM to
clear them.

nnARM

