The genArise Package

Ana Patricia Gomez Mayén
Gustavo Corral Guillé
Lina Riego Ruiz
Gerardo Coello Coutino

November 1, 2004

1 Introduction

genArise is a package that contains specific functions to perform an analysis
of microarray obtained data to select genes that are significantly differen-
tially expressed between classes of samples. Before this analysis, genArise
carry out a number of transformations on the data to eliminate low-quality
measurements and to adjust the measured intensities to facilitate compar-
isons.

First, you must install the R system. The current released version is
2.0.0 and the binary can be obtained via CRAN, a collection of sites which
carry identical material, consisting of the R distribution(s), the contributed
extensions, documentation for R, and binaries. The CRAN master site can
be found at the URL http://cran.R-project.org/.

Then, you need install the packages tkrplot and locfit in order to be able
to use this package. This can be done as follows:

> install.packages(c("locfit","tkrplot"))

Finally, genArise can be loaded with the next instruction:

> library(genArise)

genArise

Loading required package: locfit
Locfit for R.
August 3, 2000. (Updated for R 1.7.0, March 21, 2003)

Attaching package 'locfit':

The following object(s) are masked from package:stats :
knots

Loading required package: tkrplot
Loading required package: tcltk

Once loaded, you can proceed with the analysis of the microarray data.
genArise is provided with functions that can be applied from R prompt in
every step of analysis; however, there is also a graphical user interface to
facilitate the use of all the functions in the package.

2 The genArise Package’s Functions

The first step that you must do is to read the data contained in the input file.

To read the input files genArise have the function read.spot. This func-
tion returns an object of type Spot, because a number of functions that carry
out transformations on the data need a spot object as argument. The syntax
for this function is:

> my.spot <- read.spot(file.name, cy3 = 1, cy5 = 2,
bg.cy3 = 3, bg.cyb = 4, ids = 5, header = FALSE,
sep = "\t", is.ifc = FALSE)

Output: an object of class Spot called my.spot

And the meaning of each one of the arguments is:

genArise

file.name: this is the name of the file which the data are to be read from.
The input file format must be in columns of data which values are
separated by some character. The default separator is tab character,
but you can change that in the sep argument of this function. The
input file must contain a row for each spot in the grid, at least that
the experiment was performed by the IFC in UNAM (the 13 last rows
contain statistical information about the experiment) and probably a
header row.

cy3: location of the column that contain the query sample in the array (red
color).

cyb: location of the column that contain the reference sample in the array
(green color).

bg.cy3: location of the column that contain the background correction for
cy3.

bg.cyb: location of the column that contain the background correction for
cyo.

ids: location of the column that contain the ids for the distinct elements in
the array.

header: a logical value indicating whether the file contains the names of the
variables as its first row.

sep: the field separator character. Values on each line of the file are sepa-
rated by this character.

is.ifc: a logical value indicating whether the experiment was performed by
the Microarray Unit of the Cellular Physiology Institute of UNAM.
It just eliminate the last 13 rows that contain a statistic about the
experiment.

As an example for describing each package’s function contained in this
user’s manual we will use a subset of the microarray data object generated
with read.spot function. This subset is called Simon and it can be loaded
in this way:

2.1 Diagnostic plots genArise

> data(Simon)
> 1s()

[1] "Simon"

You have created an object of the class Spot in the current
environment so you will be able to apply to that object any
function of genArise that receives a spot as argument.

2.1 Diagnostic plots

Previous to any kind of analysis, once you have load the input, you are able
to visualize it using the function imageLimma. This function constructs an
image plot in a green to red scale representing the log, intensity ratio for
each spot on the array. See Figure 1. The imageLimma function receives
several arguments depending on the data that is going to be analyzed.!

> data(Simon)

> datos <- attr(Simon, "spotData")# Extract spot data

> M <- log(datos$Cy3, 2) - log(datos$Cyb5, 2)

> imageLimma(z = M, row = 23, column = 24, meta.row = 2,
meta.column = 2, low = NULL, high = NULL)

OQutput: Plot the intensity values

In the same way that you can plot the log, intensity ratio for each spot,
you can also plot the background value that correspond to each one of the
intensities. See Figure 2 and 3.

For example, this is the plot for Cy3 intensities.

> data(Simon)
> datos <- attr(Simon, "spotData'")# Extract spot data

HimageLimma is completly based in the imageplot function from the limma package.

Gordon K. Smyth (2004) “Linear Models and Empirical Bayes Methods for Assessing
Differential Expression in Microarray Fxperiments ”, Statistical Applications in Genetics
and Molecular Biology: Vol. 3: No. 1, Article 3. http://www. bepress. com/ sagmb/

vol3/iss1/art3

2.1 Diagnostic plots genArise

Figure 1: Image plot in a green to red scale.

> R <- log(datos$BgCy3, 2)
> imagelLimma(z = R, row = 23, column = 24, meta.row = 2,
meta.column = 2, low = "white", high = "red")

Output: Cy3 Background value

And this is the plot for Cy5 background.

> data(Simon)

> datos <- attr(Simon, "spotData")# Extract spot data

> G <- log(datos$BgCy5, 2)

> imageLimma(z = G, row = 23, column = 24, meta.row = 2,
meta.column = 2, low = "white", high = "green")

5

2.1 Diagnostic plots

genArise

R TN A

Figure 2: Cy3 background preview.

OQutput: Cy5 Background value

With the previous plots, you can see a preview of the raw data (without back-
ground correction and normalization).It is important to clarify that these im-
age plot one does not replace the original TIFF image from the microarray

experiment.

Data analysis requires to be able to plot a spot after apply any operation
and genArise provides functions for this purpose. For example, we can plot
the values R vs I, M vs A and Cy5 vs Cy3. This functions receive an object

of the class Spot.

2.1 Diagnostic plots

genArise

Figure 3: Cyb background preview.

> data(Simon)
> ri.plot(Simon)

OQutput: R vs I plot. See Figure 4.
> data(Simon)

> ma.plot(Simon)

OQutput: M vs A plot. See Figure 5.

> data(Simon)
> cys.plot (Simon)

2.1 Diagnostic plots genArise

Figure 4: R vs I plot.

Output: plot the Cy3 and Cyb values. See Figure 6.

At this moment, you can proceed with the data analysis. There are different
functions for this purpose. The first of them makes the background correc-
tion; that is a subtraction Cy3 - BckgCy3 and Cyb - BckgCyb for each spot.
See Figure 7. The name of this function is bg. correct.

> data(Simon)
> c.spot <- bg.correct(Simon)
> ri.plot(c.spot)

input: The argument of this function is a spot object
output: A spot object with the corrected background

8

2.1 Diagnostic plots genArise

Figure 5: M vs A plot.

Data normalization can be done by grids or in a global way, and each
method returns different results for the same input data set. We must re-
mark that the grid normalization can just be applied to the complete data
set, so you must not eliminate spots in order to avoid errors executing this
function. In the normalization procedure any observation in which the R
value is zero will be eliminated.

Grid normalization is executed with the function grid.norm() and is
mandatory to indicate the dimensions of the subgrid, so, you must indicate
the number of rows and columns within each subgrid. See Figure 8.

> data(Simon)
> n.spot <- grid.norm(mySpot = Simon, nr = 23, nc = 24)

9

2.1 Diagnostic plots genArise

10000 20000 30000

Cy3

Figure 6: Cy3 vs Cyb plot.

> ri.plot(n.spot)

input: The argument of this function is a spot object
and the number of rows (nr) and columns (nc) of each subgrid.
output: A normalized spot object

On the other hand, the global normalization is executed with the function
global.norm and it only requires as argument an object of the class Spot.
See Figure 9.

> data(Simon)
> n.spot <- global.norm(mySpot = Simon)
> ri.plot(n.spot)

10

2.1 Diagnostic plots genArise

Figure 7: R vs I plot of backgroung corrected data.

Input: The argument of this function is a spot object
OQutput: A normalized spot object

As we said previously both functions returns different results and for this
reason you must choose the suitable function of normalization to the analysis
that we want to do. It for any reason spots are eliminated before normal-
ization procedure (applying operations as filtering or duplicates elimination)
the global normalization is the only normalization way.

In this example, the number of data in the spot is small and for this rea-

son the obtained values with both normalization functions could seems very
similar in the plots, however this is not the same in all the cases.

11

2.1 Diagnostic plots genArise

Figure 8: R vs I plot of grid normalized data.

Data filtering is an important step too in the data analysis. genArise
implements the intensity-based filtering algorithm described by John Quack-
enbush?. After this filtering you keep only array elements with intensities
that are statistically significantly different from background. See Figure 10.

> data(Simon)
> f.spot <- filter.spot(mySpot = Simon)
> ri.plot(f.spot)

2John Quackenbush “Microarray data normalization and transformation”. Nature Ge-
netics. Vol.32 supplement pp 496-501 (2002)

12

2.1 Diagnostic plots genArise

Figure 9: R vs I plot of data after global normalization.

Input: The argument of this function is a spot object.
OQutput: A spot filtering spot object

Another step is the replicates filtering, and in this step, a lot of observa-
tions are eliminated. We can not just conserve the half of points, but also
this function eliminates those points where the diference between the R value
of the duplicated observations is bigger than 20% of one of them. See Figure
11.

> data(Simon)
> u.spot <- spotUnique(mySpot = Simon)
> ri.plot(u.spot)

13

2.1 Diagnostic plots genArise

Figure 10: Filtered data, R vs I plot.

Input: The argument of this function is a spot object.
Output: A spot object without duplicates observations

However, genArise offers other functions for the elimination of duplicates
different from the previous one. We talk about the function alter.unique.
This function takes the R value of each one of the duplicated observations
but just keep that observation with the extremest R value. So, if both of
them are positives this function keeps the greater one, if both of them are
negatives it keep the lower one and if there is one positive and one negative
both observations are eliminated. It is clear that with this function a greater
number of observations is conserved compared to those that are obtained
with spotUnique function. By this way you will probably have at the final

14

2.1 Diagnostic plots genArise

Figure 11: R vs I plot of data after apply spotUnique function.

of the analysis a greater number of observations in the upper-expressed and
lower-expressed because you keep the extreme values. See Figure 12.

> data(Simon)
> u.spot <- alter.unique(mySpot = Simon)
> ri.plot(u.spot)

input: The argument of this function is a spot object.
output: A spot object without duplicates observations

The other fuction just get the mean of the duplicates and perform the
filtering. The name of this function is meanUnique. See Figure 13.

15

2.1 Diagnostic plots genArise

Figure 12: R vs I plot of data after apply alter.unique function.

> data(Simon)
> u.spot <- meanUnique (mySpot = Simon)
> ri.plot(u.spot)

input: The argument of this function is a spot object
output: A spot object without duplicates observations

The approach we use involves calculating the mean and standard devia-
tion of the distribution of logs(ratio) values and defining a global fold-change
difference and confidence; for this we use a Z-score for the data set. In an
R-I plot, that would be represented as parallel horizontal lines; genes outside
of those lines would be the differentially expressed®. See Figure 14.

16

2.1 Diagnostic plots genArise

Figure 13: R vs I plot of data after apply meanUnique function.

As a matter of fact genArise offers two options for this analysis. You just
need to specify in the type argument on the Zscore function if you want a
R-T or a M-A analysis. This function receive as argument an object of the
class Spot and returns an object of other class called DataSet that includes
as one of their values the Z-score for the data set.

This is the example for Zscore using R-I values.

> data(Simon)
> s.spot <- Zscore(Simon, type="ri'")

Input: The argument of this function is a spot object
Output: An object of the class DataSet

17

2.1 Diagnostic plots genArise

And this is the example for Zscore using M-A values

> data(Simon)
> s.spot <- Zscore(Simon, type="ma')

Input: The argument of this function is a spot object
Output: An object of the class DataSet

Since the objects of the class DataSet are different from the objects of
the class Spot we need a function to plot them. For this purpose exists a
function called Zscore.plot. So, in a R-I plot, array elements are color-
coded depending on wether they are less than 1 standard deviation from the
mean (blue), between 1 and 1.5 standard deviations (green), between 1.5
and 2 standard deviations (red), or more than 2 standard deviations from
the mean (orange).

> data(WT.dataset)
> Zscore.plot(WT.dataset)

Input: An object of the class DataSet
Output: Plot for identify differential expression

After we finished our slice analysis we get a up-regulated and down-
regulated set. This will be the set of study genes for genMerge. Given
this set, genMerge retrieves functional genomic data for each gene and pro-
vides statistical rank scores for over-representation of particular functions in
the dataset. The genMerge function is completly based on GeneMerge from
Cristian I. Castillo-Davis and Daniel L. Hartl 3.

Given a set of genes (for example the upper-expressed), genMerge write in
files the data of an statistic analysis of the upper/representation of functions
or particular categories on the set of data upper-expressed.

You must take care in the format of the input file, the file must not have
a header row. This function requires four data files and the file name where
will be save the obtained information. The main file that the function needs

3Cristian I. Castillo-Davis, Department of Statistics, Harvard University http://www.
oeb.harvard.edu/hartl/lab/publications/GeneMerge

18

2.1 Diagnostic plots genArise

Figure 14: Data after Z-score Analysis.

are:

Association file. This file contains two columns splited by tab charac-
ters. The first column corresponds to the gene identifier in the microarray
and the second one corresponds to a list of associated ids for the geneontol-
ogy database to this gen (GO). Each GO in this list is separted by ”;” and
is necessary to consult a database to locate the associated GOs to each gen
(see http://www.geneontology.org)

Example:

YALOO1C GO:0003709;

19

2.1 Diagnostic plots genArise

YALOO2W GO:0005554;
YALOO3W GO:0003746;
YALOOSC GO:0003754;G0:0003773;G0:0004002;
YALOO7C GO:0005554;

Description file. This file also contains two columns splited by tab
characters, the first one corresponds to the name of some GOs and the second
one corresponds to the description associated to each GO in the database.

Example:

GO:0000005 ribosomal chaperone activity

GO:0000006 high affinity zinc uptake transporter activity

GO:0000007 low-affinity zinc ion transporter activity

GO:0000008 thioredoxin

GO:0000009 alpha-1,6-mannosyltransferase activity

G0:0000010 trans-hexaprenyltranstransferase activity

G0:0000014 single-stranded DNA specific endodeoxyribonuclease activity
G0:0000016 lactase activity

All genes (population.genes). This file should only contain one col-
umn, the spot identifiers or those of the input file not analyzed yet are the
column information, each identifier is a row file.

YALOO1C
YALOO2W
YALOO3W
YALOO4W
YALOO5C
YALOO7C
YALOOSW
YALOO9W
YALO10C
YALO11W

The genes to study. Like the preceding described file, this file only
contains one column and each row corresponds to the name of one of the
genes in the set that will be studied (upper-expressed or lower-expressed).
The function sintax is the next one:

20

2.1 Diagnostic plots genArise

> # Let's suppose that original spot is o.spot

> # To write the population file you can use write.table
> ids <- attr(o.spot, "spotData")$Ids

> ids <- unique(ids)

> write.table(ids, "population.genes")

Input: An object of class Slice
Output: Plot upper-expressed and lower-expressed

In the same way, with the write.table function you can write the iden-
tifiers of the genes set that will be studied. Suppose there exist a slice Spot
we call s.spot wich have the results after slice analysis, if you wish that your
set of study have the upper-expressed identifiers and the lower-expressed
identifiers to write the corresponding file, you must follow the next code.

> # To write the study genes file

> study.ids <- c(s.spot$Id.up, s.spot$ld.down)
> study.ids <- unique(study.ids)

> write.table(study.ids, "study.genes")

If you only want to preserve the identifier of some set, say upper-expressed
or lower-expressed type the next lines:

Only write upper-expressed

study.ids <- s.spot$Id.up # to write lower-expressed use s.spot$Id.down
study.ids <- unique(study.ids)

write.table(study.ids, "study.genes")

vV VvV Vv Vv

The other files should be constructed consulting a database or could be
downloaded from the internet, this files should contain the format described
above, so that the genMerge function operates correctly. The sintax of this
is:

> genMerge (gene.association, description, population.genes,
study.genes, output.file = "GeneMerge.txt"){

The results will be in the corresponding file, in the above example Gene-
Merge.txt.

21

genArise

3 The genArise GUI

For making the analysis easier, genArise joins all functions in a graphic in-
terface, to call this function we type the next line:

> genArise()

Now the next menu-bar is displayed.

GenArise Microarray Analyzer

File Help |

Figure 15: genArise Menu-bar.

Once in this menu you should create a New Project following the sequence
File — Project — New Project.
The last step displays a window where you should indicate the file’ s location
containing the data to analyze, indicating whether the file is a foreing ex-
periment or belong to one made in the Cellular Physiology Institute UNAM.

In the lower textfields you should indicate the name of the new project,
including the complete path (location where you want to save the project
containing the results and graphics obtained during the analysis).

For example:

The Figure 16 shows an analysis that will be made on the file Rat_5k_014.csv
containig a microarray made in the Cellular Physiology Institute’ s Microar-
ray Unit. We call the project “ProjectRat ”. The default name for the
graphics directory is Plot and for the data files is Results. If we wish to
modify this names we just change the names that appear in the options Lo-
cation for Plots and Location for Results, respectively.

Then, the window containing a preliminary view of the main grid is dis-
played as an image plot in a green to red scale representing the logs intensity
ratio for each spot on the array. See Figure 17. It is important to clarify
that these image plot one does not replace the original TIFF image from the
microarray experiment.

22

genArise

Project Configuration

Fill the text entries with the path and name of your new Project

Input

«~ Foreign ¥ IFC

Fill the text entries with the correct columns in your file

cy3 [11 cys [i2 BgCy3 |[13 BgCys |[14 I 6

Output
Project Hame: EMyPrnjeci hrowse..,
Location for Plots: éF'ID'[S
Location for Results: [Results
oK | cancel |

Figure 16: Project Configuration Window.

You also can see the green and red levels in a separated form just by
selecting the corresponding option in the lower right part of the window. See
Figure 18 and 19.

In the upper right side of the window we can see the data attributes of
the file that is being analyzed and the experiment configuration.
You can save the plot in a pdf file by selecting the option Save as PDF in
the menu Options. With the option Annotations of the same menu, you
can make some important annotations through the analysis and save these
in a file called annotations.txt. See Figure 20.

23

genArise

GenArise Microarray Analyzer

File Back Analyze Options Help |

Spot Features

Mombre: MvsD2
Rows: b1
Columns: 30
Metarows : 12
MetaColumns: 4

4 Red & Green

~- Red

~ Green

GenfTise Hicroarray hnalyzer
Institube of Gellular Physiology UHAN

e

Figure 17: Window with image plot in a green to red scale.

At this moment you can begin the analysis by clicking on the menu An-
alyze that will display a dialog box like the one showed in Figure 21.

By clicking Yes the program makes the operations in the next sequential
order: background correction, loess normalization, intensity-filter, duplicate
elimination. Once this analysis end we see the next window. See Figure 22.

This window shows the graphic obtained from the complete analysis, also
shows five options where you can select the original-experiment graphic and
after each operation; for example after select the option Normalized Spot
the next result is shown in Figure 23.

24

genArise

GenArise Microarray, Analyzer

File Back Analyze Options Help

Spot Features

Hombre: HvsD2

Rows: 3

Columns: 30
Metarows : 12

MetaColumns: 4

~~ Red & Green

4 Red

~ Green

Figure 18: Window with image plot for Cy3 Background value.

There is a text area in the lower side of the window where you can find
the operations done and their values.When you follow the wizard the default
values are employed in the operations. We use the grid normalization.

The menu Graphics allows you change the type of the graphic that is dis-
played. The options are: Cy3 vs Cy5, R vs I and M vs A. See Figure
24.

At the end, you find one file for each operation done, as well as for each
graphic, in the directory where are the result files of your project.

Let see what happen if you decide not to follow the wizard. In this case,
only the original-experiment graphic is displayed as shown in Figure 25.

In the menu bar you should select the operations you wish the program
make in the desired order, once an operation is made a new reference to the
transformed spot will appear in the right side of the window with which you
can see the graphic’s results obtained with that operation. Is important to

25

genArise

GenArise Microarray, Analyzer

File Back Analyze Options Help

Spot Features

Hombre: HvsD2

Rows: 3

Columns: 30
Metarows : 12

MetaColumns: 4

~~ Red & Green

- Red

Green

Figure 19: Window with image plot for Cy5 Background value.

note that the operations are performed on the selected spot. If we wish to
make a sequential analysis you must take care of the selected option. The
operations that the program makes when you decide to follow the wizard are
the same that you can find in the menu Options.

26

genArise

CenArise Microarray Analyzer A
Institute of Cellular Physiclogy UNAM

You can type any interesting annotation here and this text will bhe
save in a text file with name annctation.txt. |:)

Figure 20: An Editor for annotations.

28 eoo

Do you want to follow the
vrizard?

‘ Yes | Ho | Eam:ell

Figure 21: Asking dialog box.

27

genArise

File Back Graphics Slice Analysis Oplions Help

Onginal Spot

.~ Corrected Spot
~ Mommalized Spot
_ Filter Spot.

. Without duplicates

GenhTise HicToarray hnaluyzer
Institute +f Cellular Physiology THAH

Background sorrestion............ o

Figure 22: Text area while analysis.

28

genArise

File Back Graphics Slice Analysis Oplions Help

.~ Onginal Spot
.~ Corrected Spot
% Normalized Spot
_ Filter Spot.

. Without duplicates

GenhTise HicToarray hnaluyzer
Institute +f Cellular Physiology THAH

Background sorrestion............ o

Figure 23: You can select any step of this analisis for preview

29

genArise

File Back Graphics Slice Analysis Oplions Help

- Original Spot

- Corrected Spot
~ Mommalized Spot
.- Filter Spot.

Without duplicates

5000 ioooo 1

GenhTise HicToarray hnaluyzer
Institute +f Cellular Physiology THAH

Background sorrestion............

Figure 24: Cy3 vs Cyb plot

30

genArise

Filter Mormalize Graphics ice Analysis Options Help

4 Onginal Spot

SenRTise HisTenrzay hnalyser
Insbitube of Gellular Physielogy VMR

Figure 25: Making the analysis without follow the wizard.

31

