

Embedix SDK 2.4.1
Tools Addendum

Contents

Embedix SDK Tools Addendum Overview ____________________ 5
What’s New? __ 5
VNC Remote Connection How-To ___________________________ 6

Software Description: __________________________________ 6
Installation ___ 6
VNC Server ___ 6
VNC Viewer ___ 7
Using VNC for Remote Support __________________________ 8
IT Department Information: ______________________________ 9
Summary: __ 9
Home Network Users: __________________________________ 9

Replacing the Target Wizard SPLASH Screen with a new Image_ 10
Debian Binary Import Tool (DBIT) __________________________ 11

Importing a Debian Package ____________________________ 11
The import/export panel: _______________________________ 12
Modifying the ECD ____________________________________ 13
Modifying the pre/post install scripts_____________________ 14

Creating a New BSP _____________________________________ 15
Step 1: Open a SDK Project of the Same Architecture ______ 15
Step 2: Importing a New/Patched Kernel into the Project____ 15

Example: Modifying the Existing Embedix Kernel_____ 16
Importing a New Kernel ___________________________ 16
Example: x86 Kernel Replacement _________________ 17
Example: Kernel Patch, Update and Replacement ____ 17

Step 3: Import New Device Drivers ______________________ 20
Device Driver Import Process ______________________ 20
Makefile changes: _______________________________ 20
Create LBC and ECD Files with Package Editor _______ 21
Kernel Module Example Source Code _______________ 22
Kernel Module Example Makefile ___________________ 22

Contents

Step 4: Import a New GNU Tool Chain ___________________ 23
GNU Tool Elements ______________________________ 23
GCC: __ 23
GDB: __ 24
Binutils: __ 24
Other Software: _________________________________ 24
Locating Updated GNU Tools ______________________ 25
Gnu Tool Naming ________________________________ 25
New Tools Integration Steps_______________________ 26
GCC Elements: __________________________________ 26
GCC from other Linux Sources_____________________ 27
Building your own Tool Chain _____________________ 28
Binutils: __ 29
Libraries: _______________________________________ 29
Header Files ____________________________________ 29
Modifying tc.config ______________________________ 29
Testing New Tool Chains__________________________ 29

Step 5: Import New Applications and Services ____________ 30
Step 6: Modify the Deployment Wizard___________________ 30

Deployment Architecture__________________________ 30
Important Files __________________________________ 30
Sequence of events when deploying ________________ 31
Deployment Phases ______________________________ 31
Writing a deployment wizard_______________________ 32
Getting Started __________________________________ 32
Using the page library (pagelib.py) _________________ 32
Running shell commands from within the wizard _____ 34
Running as Root_________________________________ 34
Utility Functions _________________________________ 35
Deployment Guidelines ___________________________ 35
Deployment Hooks_______________________________ 36

Contents

Requirements ___________________________________ 36
deploy_page ____________________________________ 36
Validate(self,database) ___________________________ 37
save_config(self, database) _______________________ 37
do_action(self, database, action) ___________________ 37
do_package_sections(self, database, lbc_section) ____ 38
Usage notes ____________________________________ 38
Importing deploy_page ___________________________ 38
Calling deploy_setup(database) ____________________ 38
The LDC File ____________________________________ 39
Package Deploy Configuration _____________________ 40
Files ___ 43
Manual Deployment ______________________________ 43

Step 7: Creating a New BSP from the Project _____________ 44
Using export_bsp ________________________________ 44

Embedix Support __ 45
Notices __ 47

Copyright © 2002 Embedix, Inc. Embedix SDK Tools Addendum – October 2002 5

Embedix SDK Tools Addendum Overview
This document describes additional features released within Embedix SDK v2.4.1-1 and is
designed to supplement the existing documentation. There is little overlap between the original
Embedix Tools Guide and this document.

What’s New?
Embedix SDK v2.4.1-1 contains updates, bug-fixes and new enhancements. This list includes:

• New!
o VNC Remote support capability software added and documented

o Debian Binary Import Tool (DBIT)

o LPF Mime Type for KDE

o External SPLASH screen

o Update Wizard v 2.4

o dot-config Import Update

o example files

! ~/cdrom/examples

o Enhanced documentation

! Located on the CD at /documents and installed to the host at
/opt/Embedix/documents.GNU documents

! Advanced Linux Programming – by Mark Mitchell, Jeffrey Oldham, and
Alex Samuel, of CodeSourcery LLC, published by New Riders
Publishing, ISBN 0-7357-1043-0, First Edition, June 2001. Available
under the Open Publication License, Version 1, no options exercised.
(See: http://www.advancedlinuxprogramming.com/about.html)

! Linux Device Drivers – by Alessandro Rubini & Jonathan Corbet,
published by O'Reilly & Associates, ISBN 0-59600-008-1, 2nd Edition
June 2001. Available under the GNU Free Documentation License.
(See: http://www.xml.com/ldd/chapter/book/index.html)

!

• Updates
o Package Editor Update

o Busy Box Update

o DDD Update

o new libstdc++ for x86

http://www.advancedlinuxprogramming.com/about.html
http://www.xml.com/ldd/chapter/book/index.html

6 Embedix SDK Tools Addendum – October 2002 Copyright © 2002 Embedix, Inc.

VNC Remote Connection How-To
To better assist our customers with the configuration and use of their tools, we have included
VNC software on the Embedix SDK installation CD. This VNC software will allow the Embedix
support staff to interactively control your own installation to speed troubleshooting and to better
resolve training issues. Though this feature is not required, enabling this will allow the Embedix
staff to support you more efficiently.

This chapter describes the configuration and use of Virtual Network Computing.

Software Description:
TightVNC - "VNC (an abbreviation for Virtual Network Computing) is a great client/server
software package allowing remote network access to graphical desktops. With VNC, you can
access your machine from everywhere provided that your machine is connected to the Internet.
VNC is free (released under the GNU General Public License) and it's available on most
platforms.

TightVNC, includes a lot of new features, improvements, optimizations and bug fixes over the
original VNC version, see the list of features below. Note that TightVNC is absolutely free, cross-
platform and compatible with the standard VNC. Many users agree that TightVNC is the most
advanced free remote desktop package. And it's being actively developed so you can expect
TightVNC will become even better.

TightVNC can be used to perform remote administration tasks in Windows, Unix and mixed
network environments. It can be very helpful in distance learning and remote customer support.
Finally, you can find a number of additional VNC-compatible utilities and packages that can
extend the areas where TightVNC can be helpful.

TightVNC is a project maintained by Constantin Kaplinsky. Many other individuals and companies
participate in development, testing and support." -- http://www.tightvnc.com/index.html

Website: http://www.tightvnc.com

Embedix CD software and document location: /misc

Installation
A VNC system consists of two components, a VNC Server and a VNC Viewer. The VNC server
should be installed on the Development system running Embedix SDK. The VNC Viewer should
be installed on the development system, and on any other system which desire to view the
development system remotely.

VNC Server
The Embedix SDK CD includes RPM files for installation of the Tight VNC optimized server on
Linux platforms. To install VNC Server, follow the procedure below:

http://www.tightvnc.com/index.html
http://www.tightvnc.com/

Copyright © 2002 Embedix, Inc. Embedix SDK Tools Addendum – October 2002 7

• super-user (e.g. su)

• mount the Embedix SDK CD (e.g. mount /mnt/cdrom)

• Change directory to the VNC contents (e.g. cd /misc)

• rpm -Uvh vnc-server-3.3.3r2+tight1.2.6-1.i386.rpm

o Note: this is a Red Hat Linux (and compatible distributions) RPM file.

o If you are using a non-Red Hat compatible distribution, we have provided the
source code for your convenience.

• Install KDE as the default desktop for the virtual sessions.
o cp $HOME/.vnc/xstartup $HOME/.vnc/xstartup.orig

o cp xstartup $HOME/.vnc/xstartup

• Install a new version of the vncserver script which is more distribution independent than
the original (new font paths)

o cp /usr/bin/vncserver /usr/bin/vncserver.orig

o cp vncserver.new /usr/bin/vncserver

VNC Viewer
The directory /miscutils on the CD includes VNC viewers for both Windows (TM) and Linux
platforms.

Q: Why install VNCViewer on the development platform?

A: VNCServer does not mirror the display which is currently shown on your monitor, but
instead it creates a new and independent desktop which is only accessible via the
network. VNCviewer is required to bring that network accessible display out to your
physical monitor.

To install VNC viewer, follow the procedure below:

• super-user (e.g. su)

• mount the Embedix SDK CD (e.g. mount /mnt/cdrom)

• Change directory to the VNC contents (e.g. cd /miscutils)

• rpm -Uvh vnc-3.3.3r2+tight1.2.6-1.i386.rpm

o This is a Red Hat Linux (and compatible distributions) RPM file.

o If you are using a non-Red Hat compatible distribution, we have provided the
source code for your convenience. Alternatively you can use RPMFind at
http://rpmfind.net/linux/RPM/ or http://rpmfind.net/linux/RPM/Distribs.html to
locate a version for your distribution.

Note: A windows version is also available on the CD at /miscutils, for which installation is self
explanatory:

http://www.redhat.com/
http://www.redhat.com/
http://rpmfind.net/linux/RPM/
http://rpmfind.net/linux/RPM/Distribs.html

8 Embedix SDK Tools Addendum – October 2002 Copyright © 2002 Embedix, Inc.

Using VNC for Remote Support
1. Pre-configure the network as required and summarily described below.

2. Start the VNCserver on the development platform
o vncserver -geometry 800x600 -depth 16

! -geometry specifies the screen resolutions. Standard values should be
used: 640 x 480, 800x600, 1024x768

! -depth 16 specifies the color depth. Either 16 or 24 should be used.
The use of 16 will reduce bandwidth requirements. Target Wizard
requires a depth of at least 16.

o Note: Detailed vncserver help can be found by typing:

! man vncserver : provides detailed information on usage.

! vncserver --help : provides summary usage information

! vncserver --junk (or any other non-recognized string) : provides
more details on usage

o The first time that VNCserver is started, you are required to provide a password
which must be entered by each VNCviewer client.

! This password can be changed in the future by /usr/bin/passwd

3. Start the VNCviewer on the development system (required to monitor what the remote
party is doing on your own machine)

o at the prompt, enter: vncviewer
o enter in the local IP address of that development system (found by

/sbin/ifconfig)

o enter in the password (configured in the VNCserver above)

4. Start the VNCviewer on the remote system

o at the prompt, enter: vncviewer (on windows systems, click on the VNCviewer
application)

o enter in the IP address of the system to be remotely controlled. Depending on the
network configuration, this can be:

! The local address of the development computer -- found by /sbin/ifconfig

! The IP address of the home router/gateway (assigned by the Internet
Service Provider found by going to the CGI Router Configuration Pages)

! Another address provided by your organization's IT professional.

o enter in the password (configured in the VNCserver above)

5. Important: On the development machine, after the session has completed, shutdown the
Embedix desktop tasks, and then kill the vncserver using the following command:

o vncserver -kill :1

Copyright © 2002 Embedix, Inc. Embedix SDK Tools Addendum – October 2002 9

IT Department Information:
• VNC Getting Started Guide : http://www.uk.research.att.com/vnc/start.html

• Technical VNC information : http://www.uk.research.att.com/vnc/docs.html

Summary:
The typical sequence for a Linux machine, which wants to be accessed via VNC is the following:

Machine state: The developer's machine has already booted to Linux, a graphics Xwindowing
environment has been started, and the VNC server has been started for the #1 virtual screen (i.e.
VNC listens on port 5801).

Action: The end users personal/corporate firewall needs to be configured to allow incoming tcp
connections to the developer's computer on destination port 5801. A sample rule using iptables in
linux would be similar to this:

iptables -A FORWARD -s 0.0.0.0/0 -d developer_ip/32 --
destination-port 5801 -m state --state NEW -j ACCEPT

Note: Your corporate IT department may not approve of inbound connections from anywhere on
the Net to the VNC port on your box. Please email Embedix customer support for the current
Embedix source address and netmask for the above rule.

Home Network Users:
The simplified procedure below works with many home network routers and configurations.
Modify as appropriate for your own hardware and network configuration.

1. Open your web browser to the router CGI interface

o Login in to 192.168.1.1 (substitute your router IP address for the address at the
left)

2. Fill in the password

3. Go to Advanced Setup

o Enter into the DMZ set-up screens

o Enter the workstation IP address

o apply.

4. Remember to either disable DMZ or reset the DMZ address to an unused address when
the remote connection is completed.

10 Embedix SDK Tools Addendum – October 2002 Copyright © 2002 Embedix, Inc.

Replacing the Target Wizard SPLASH Screen with a new
Image
Target Wizard includes the ability to replace the default Embedix Target Wizard splash screen
with your own graphics image. This can be useful when providing an independent BSP to ship
with your board, or when providing additional embedded components or services which are
enabled for the developer.

The replacement image file should be 640x480 pixels and must be named either "splash.png" or
"splash.xpm". It must be placed in: /opt/Embedix/usr/lib/images/

Copyright © 2002 Embedix, Inc. Embedix SDK Tools Addendum – October 2002 11

Debian Binary Import Tool (DBIT)
The Debian Binary Import Tool allows the developer to download hundreds of publicly available
Debian Gnu/Linux binary applications, and to easily include them on target via Embedix Target
Wizard. DBIT even supports dependencies, conflicts, file sizes, and help/descriptive text.

Current DBIT Features include:

• Checks the project architecture to ensure that the selected binary will in fact run.

• Debian dependencies are mapped to Embedix packages

• Extracts binary file sizes - for inclusion in storage estimates.

• Fine-grained configuration of man pages, info pages, docs and locale strings.

• Automatically places Embedix SDK package files into correct locations in the project.

• Allows user to graphically modify pre and post install scripts as well as specific
dependency info.

• Installs the resultant package at the board or project level.

• Option to create LPF (Lineo Package Format) file for portability to other SDK users.

There are caveats of course. The target architecture must be compatible with the Debian binary,
and the libraries must be of the same major version number.

Why Debian Gnu/Linux? Debian Gnu/Linux is a front-runner within the desktop Linux world and
currently consists of 3880 different software packages ranging from network services, GUIs, word
processors, multi-media utilities and much more. Among many other positive traits, most notable
for the embedded world is the fact that the full Debian Gnu/Linux distribution is natively compiled
across multiple architectures including x86, PPC, ARM, and more. Debian Gnu/Linux includes the
*.deb package format which includes most of the information necessary for inclusion within
Embedix Target Wizard. The Embedix SDK combined with Debian Gnu/Linux yields an unrivaled
embedded system configuration tool, providing embedded board specific kernel and application
support combined with access to a complete Linux distribution.

Importing a Debian Package
Note: Debian packages can be found at: http://www.Debian.org/distrib/packages

http://www.debian.org/distrib/packages

12 Embedix SDK Tools Addendum – October 2002 Copyright © 2002 Embedix, Inc.

The import/export panel:

Here you can select which package to import, which options to create when importing and where
to export.

To import a Debian package, enter the path in the field under the caption "Debian Package Path".
You can also select the browse button to find it in your file system.

Once you’ve selected a package, the name will be derived from the control file in the Debian
package itself, but you can override the name by entering it in the field labeled "Package Title:".

When a Debian package is imported, the importer marks files as man pages, info pages,
documentation, locale files, and required files. You can allow options for each of these categories
in the resultant Embedix package by checking the corresponding check boxes in the group
labeled "Package Options".

Note that checking these boxes does NOT mean that these files will be placed on the
target at deploy time, it simply gives the user of Target Wizard the option to include or
exclude them.

When you have entered the path to the Debian package and checked the Package Options
boxes as desired, click the "Import Debian Package". It will take a few seconds to extract
information from the Debian package.

After importing the package, you can make any desired changes to the package via the ECD and
Debian panels. Once all modifications have been made you then export the package to a Target

Copyright © 2002 Embedix, Inc. Embedix SDK Tools Addendum – October 2002 13

Wizard project, a Target Wizard BSP, or to an LPF which can be installed on any Embedix
system, at a later time.

To export an Embedix package, select which type of export you would like be selecting the
corresponding radio button in the group labeled "Package Location". Next you will need to
indicate the location of the project, bsp, or where the lpf should be placed. If you selected "Project
Directory" then you should enter the directory under <user home>/project/ that corresponds to
your project. If you selected "Board Directory" then you should enter the directory in
/opt/Embedix/bsp that corresponds to the board. If you select "Lineo Package Format (LPF)" then
simply enter the directory that you would like the lpf to be placed in.

Once you have indicated the export type and location, click on the button "Export Embedix
Package" and the export will take place. Instructions about the export will appear in a dialog box
according to your export type.

Modifying the ECD

The Embedix Component Descriptor, or ECD file defines all of the elements which simplify the
task of creating a project with Embedded Linux. For information about ecd files, please see the
Target Wizard manuals.

Clicking on a node in the tree at the left will show it's values in the fields on the right. You may
change any values for nodes in the package. Most of the time no changes will need to be made in

14 Embedix SDK Tools Addendum – October 2002 Copyright © 2002 Embedix, Inc.

this panel, but you may decide to add help information, change the default values of nodes, or
add license information in this area. The most common changes will most likely include keeplist
changes, depends information, and provides information.

Modifying the pre/post install scripts

The pre and post install scripts are used to perform actions on the target, immediately before or
after installing the software. It is generally not required to modify these settings, however this
panel provides an easy point at which to do this, on those occasions when it is required.

Important Note!
DBIT installs a small deb_installer.sh shell script in the /sbin directory of the target after
deployment. This script must be run on the target, in order to enable the imported Debian
applications on the target. When this script is run, it will run the individual pre and post install
scripts for any Debian packages which have been imported into the system.

Once this deb_installer.sh script successfully runs the install scripts for a package, it saves some
data so that it never runs the install scripts for that package again. This way you can run it
multiple times and it does not repeatedly perform the pre-post install actions. In addition, since it
keeps track of which packages have been installed, you can even add packages at a later date,
run this program again, and it will run the install scripts for only the new packages, not the old
ones.

Copyright © 2002 Embedix, Inc. Embedix SDK Tools Addendum – October 2002 15

Creating a New BSP
A Board Support Package for Embedix SDK consists of five primary elements:

1. Linux kernel

2. Device Drivers

3. GNU toolchain

4. User applications and Services

5. Deploy Wizard

The following paragraphs discuss how to import each of these elements into the Embedix SDK
framework, in order to produce a new BSP.

Step 1: Open a SDK Project of the Same Architecture
The first step is to create a new project, from Target Wizard of a board which shares the same
processor architecture as the board you intend to create a new BSP for. This is necessary so
that:

1. The architecture specific GNU tool-chains are present.

2. The user applications and services are known to compile for the selected architecture.

All changes, for the new BSP will be made within this project.

Step 2: Importing a New/Patched Kernel into the Project
The 'config2ecd' is a command-line utility which maps kernel configuration logic (found in
[Cc]onfig.in files in kernel sources) into an 'Embedix Component Description' file (typically named
'linux.ecd'), which in turn is used by Target Wizard or other tools to:

1. Present kernel configuration options to a user for manipulation (subject to the logic
constraints of both the kernel config logic, and the .ecd constraint logic derived there
from)

2. Ultimately express user choices as a .config to drive a kernel build

The linux.ecd that accompanies a given BSP works with the kernel as shipped with that BSP -
config2ecd is made available so that users who wish to use a different kernel, or want to patch
the “stock” BSP kernel, can create a linux.ecd that matches the configuration logic of the
new/updated kernel source.

Even then, config2ecd is only needed to be used if [Cc]onfig.in logic differs between the stock
BSP kernel and new/patched kernel which the user desires to configure. In such cases,
regenerating linux.ecd from config2ecd is probably more straightforward than trying to modify
these files by hand.

config2ecd is found in /opt/Embedix/emb-bin or on the SDK CD under miscutils/ along with a
companion library, ecdlib.py.

Running './config2ecd --help' will display usage information. This utility starts with a kernel source
tree (default /usr/src/linux), reads a top-level arch/<arch>/config.in (default <arch>=i386),
recursively descending through .../Config.in files referenced therein, manipulating the
intermediate data/logic as required, to produce linux.ecd, which in turn is used by Target Wizard

16 Embedix SDK Tools Addendum – October 2002 Copyright © 2002 Embedix, Inc.

to help users navigate dependencies. When the user resolves target packages and the required
kernel support via tw, tw then translates the kernel-specific choices via linux.ecd into a .config file
used for 'make oldconfig'.

Note: An enhanced, graphical version of config2ecd, named Linux Kernel Import Tool (LKIT) is
available as a complementary tool to Embedix SDK. This tool greatly simplifies the process of
importing, configuring, and saving a new kernel into Embedix Target Wizard. Contact Embedix
sales for information on this tool.

Example: Modifying the Existing Embedix Kernel
The config2ecd utility supports the re-integration of kernel patch changes back into the SDK.
We’ll describe this by example below.

A BSP packager, username “clem”, has created a i386 project located in ~clem/project/i386.

After making kernel source changes that involve CONFIG_* changes, he wishes to re-integrate
this kernel back into the SDK project. To perform this, the following command should be
executed at the prompt:

/opt/Embedix/emb-bin/config2ecd -o ./ \
-d /home/clem/project/i386/build/rpmdir/BUILD/linux \ >& log.config2ecd

This command causes config2ecd to traverse the designated kernel source tree under the i386
project, writing the resultant linux.ecd file to the current working directory.

Now, to use this new ecd file in the existing project, or to create a new BSP, the ECD file should
be moved to the appropriate <project>/config-data/ecds/{local|board}/ directory of the project.
(e.g. /home/clem/project/i386/config-data/ecds/{local|board}/)

Importing a New Kernel
It is also possible to import a completely new kernel, using config2ecd to create a new linux.ecd.

Although we have simplified the procedure as much as possible, it is important to note that this
kernel replacement procedure is not a trivial one, or one which is guaranteed to be error-free with
every kernel which you might download. This is because some applications or packages within
an Embedix BSP have specific inter-kernel dependencies which may be broken when changing
the kernel source. In many cases, the result of a new kernel import is an unfulfilled dependency
icon in Target Wizard – which can be safely ignored – provided that you have enabled similar
services (of perhaps a different name) within the new kernel.

Important: Prior to importing a new kernel with config2ecd, you need to apply all kernel patches
which affect the config.in files. This is necessary so that these options will be available to you
within Target Wizard. An example of a patch which affects the configure routines is the pre-
emptible kernel patch for enhanced real-time response. This patch adds a new option (e.g.
enable pre-emptible kernel) to the standard Linux configure scripts. However, If the patch does
not affect config.in then it can be applied by Target Wizard when the kernel is built.

Below, we have provided an example for importing new kernels into an existing project.

Copyright © 2002 Embedix, Inc. Embedix SDK Tools Addendum – October 2002 17

Example: x86 Kernel Replacement
The steps shown below are an example of the process to update the existing Embedix x86 kernel
to linux-2.4.18.

1. Download the kernel source from www.kernel.org

2. Made a directory to work with the new source in: mkdir 2.4.18

3. mv linux-2.4.18.tar.gz to the new 2.4.18 directory.

4. cd 2.4.18

5. mkdir kernel (this is used by config2ecd later)

6. untar the new source: tar xzvf linux-2.4.18.tar.gz

7. cd linux

8. Use config2ecd to make an ecd for the new kernel source: /opt/Embedix/emb-
bin/config2ecd –v –f arch/i386/config.in –d .

9. cd ../kernel

10. cp /opt/Embedix/Embedix-2.0/config-data/buildcontrol/kernel.lbc .

11. vi kernel.lbc

• - change the “%pkg_file” to linux-2.4.18.tar.gz

• - comment out any patches specified in the “%patches” section

12. Open a new x86 project in TW (x86-new_kernel-test)

13. cp the new kernel.lbc to <project dir>/config-data/buildcontrol/local

14. cp the new linux.ecd to <project dir>/config-data/ecds/local

15. cp linux-2.4.18.tar.gz to <project dir>/Packages/local

16. rm <project dir>/build/packagestate/kernel.*

17. Open the new project and force rebuild the kernel

18. Load a config, build the project, deploy to a board, and boot

19. On the board: uname –r (should return 2.4.18)

20. Create a new BSP from the project (which includes the new kernel)

• /opt/Embedix/emb-bin/export_bsp --projectdir <projdir> [--bspdir <newbspdir>] [--
batch] [--keeppreconfigs] [-cvsprep]

• e.g.:

Example: Kernel Patch, Update and Replacement
The steps shown below are an example of the process to update a stock 2.4.16 kernel from
kernel.org to support the pre-emptible kernel maintained by Robert Love on SH architectures.

1. Download the 2.4.16 kernel source

2. Make a directory to work with the new source in: mkdir linux_2.4.16_sh

3. mv linux-2.4.16.tar.gz to the new linux_2.4.16_sh directory.

4. cd linux_2.4.16_sh

5. mkdir kernel (this is used by config2ecd later)

http://www.kernel.org/
http://www.kernel.org/
http://www.tech9.net/rml/linux/
http://www.kernel.org/pub/linux/kernel/v2.4/linux-2.4.16.tar.gz

18 Embedix SDK Tools Addendum – October 2002 Copyright © 2002 Embedix, Inc.

6. untar the new source: tar -xzvf linux-2.4.16.tar.gz

7. Download the patches: * pre-emptible patch for SH to the Linux directory which was
created (when the kernel was untarred) under new directory created above (e.g.
linux_2.4.16_sh/linux/)

o update patch for SH to the new directory created above (e.g. linux_2.4.16_sh/)

8. cd linux_2.4.16_sh/

9. Apply the patches

o cd linux/

o patch -p1 <preempt-kernel-sh-2.4.16-1.patch

o cd ..

o patch -p1 <sh-update-rml-2.4.16-1.patch

o Be sure to review the console output to verify that the patches were applied
successfully.

10. Tar up the patched kernel source

o cd ..

o tar -cvf sh_linux-2.4.16.tar linux/

o gzip sh_linux-2.4.16.tar

11. cd linux/

12. make ARCH=sh menuconfig

13. Configure your kernel as appropriate for your hardware.

o Under the Processor type and features menu be sure to select the Preemptible
kernel (NEW) option

o Be sure to save your kernel configuration upon exit

14. Use config2ecd to make an ecd for the new kernel source:

o /opt/Embedix/emb-bin/config2ecd –v –f arch/sh/config.in –d .

15. cd ../kernel

16. cp /opt/Embedix/bsp/BigSur-2.0/config-data/buildcontrol/kernel.lbc .

17. Edit kernel.lbc

o Change the “%pkg_file” to sh_linux-2.4.16.tar.gz

o Comment out (#) the patches files

o Note: You could use simply the native kernel.org tar-ball and then apply the
patches here. However, because these patches add configuration items, the
ECD would be incorrect and possibly non-functional.

18. Open a new SH project in TW (BigSur-new_kernel-test)

o This creates the project structure into which the new kernel will be inserted.

19. Close the new SH project

20. cp the new kernel.lbc to <project dir>/config-data/buildcontrol/local

21. cp the new linux.ecd to <project dir>/config-data/ecds/local

22. cp sh_linux-2.4.16.tar.gz to <project dir>/Packages/local

http://www.kernel.org/pub/linux/kernel/people/rml/sh/preempt-kernel-sh-2.4.16-1.patch

Copyright © 2002 Embedix, Inc. Embedix SDK Tools Addendum – October 2002 19

23. rm <project dir>/build/packagestate/kernel.*

24. Open the new project

25. Load the configuration file produced during the make ARCH=sh menuconfig step.

o Select: FILE --> Import Kernel .config

o Browse to the /linux directory where the patched kernel resides (e.g.
/linux_2.4.16_sh/linux).

o enter .config in the File Name box.

o Bug Report: This hidden file is not shown from the browse menu. Work-around:
Enter in the file name manually.

o Open

26. Force rebuild the kernel

27. Load a config, build the project, deploy to a board, and boot

28. On the board: uname –r (should return 2.4.16)

29. Create a new BSP from the project (which includes the new kernel)

o See ExportBsp section below.

20 Embedix SDK Tools Addendum – October 2002 Copyright © 2002 Embedix, Inc.

Step 3: Import New Device Drivers

The Package Editor tool allows one to import binaries, or build from source applications including
kernel modules (i.e. device drivers). Rather than describe the process in detail, we provide a
simple example below. The Package Editor documentation should be referenced for further
details on use of that tool.

The example file pe_module_example.tar.gz on the Embedix SDK installation CD at
~/cdrom/examples/ provides each of the files shown below.

Device Driver Import Process
This section describes how to create and build a kernel module outside of the kernel source tree
and then use Package Editor to include it as a selectable node of Target Wizard. There are two
steps to this process. First: modify the Makefile, second: use Package Editor to create and
configure the LBC and ECD files needed to integrate with Target Wizard.

Makefile changes:
• The makefile must build the program when called simply with ‘make’.

• The makefile must have a clean target. You should be able to do a “make clean” and it
will clean out the directory of all previously built files.

• The makefile must have an install target and it must support a prefix argument. You
should be able to type “make install prefix=/<dir name>” and have the program install
using the the specified directory as the root.

• Refer to the Embedix SDK Tools manual, page 14-15, for more specifics and an example
of a makefile that will work with Package Editor.

• A text example of a hello.c module and makefile can be found at the end of this section.
The actual hello.c and makefile can be found in the examples directory on the Embedix
SDK CD.

Copyright © 2002 Embedix, Inc. Embedix SDK Tools Addendum – October 2002 21

Create LBC and ECD Files with Package Editor
Once your makefile is ready you can use Package Editor to create an LBC and ECD. This is a
simple process consisting of a few steps as shown below.

1. Open your project in Target Wizard

2. Click on the tools button and select 'Package Editor'

3. In Package Editor, click on 'File' and select 'Import Source as a Package'.

4. In the package name box enter a name for your module

5. Browse to the directory that contains your kernel module source code and make file. and
then click 'OK'.

6. Package Editor will import the source and open to the 'LBC File' page. See the
Embedix SDK Tools manual, pages 26 – 37, for details on modifying the LBC for your
module.

7. Click on the ECD File tab to be modifry the ECD for your module. See the Embedix SDK
Tools manual, pages 37 – 50 for detailed information on modifying ECDs.

8. Once you have the LBC and ECD, go to TW, click on "project ---> open recent project"
and select the project that you are working in (top of the list). This will force TW to reload
your project.

9. Search for your module..

10. Enable ---> build ---> deploy.

11. Test it on your target board

22 Embedix SDK Tools Addendum – October 2002 Copyright © 2002 Embedix, Inc.

Kernel Module Example Source Code

/* start.c
 * Copyright (C) 1999 by Ori Pomerantz
 *
 * "Hello, world" - the kernel module version.
 * This file includes just the start routine
 */

/* The necessary header files */

/* Standard in kernel modules */
#include <linux/kernel.h> /* We're doing kernel work */
#include <linux/module.h> /* Specifically, a module */

/* Deal with CONFIG_MODVERSIONS */
#if CONFIG_MODVERSIONS==1
#define MODVERSIONS
#include <linux/modversions.h>
#endif

/* Initialize the module */
int init_module()
{
 printk("Hello, world - this is the kernel speaking\n");

 /* If we return a non zero value, it means that
 * init_module failed and the kernel module
 * can't be loaded */
 return 0;
}

Kernel Module Example Makefile

#This is the Makefile for the Package Editor kernel module example.

prefix=/
project_dir=home/coray/project/x86
kernel_dir=build/rpmdir/BUILD/linux
#source_dir=

hello.o: hello.c Makefile
 gcc -D__KERNEL__ -DMODULE -O2 -Wall -
I/opt/Embedix/$(project_dir)/$(kernel_dir)/include -c hello.c

clean:
 rm -f hello.o

install: hello.o
 install -d $(prefix)/usr/module
 install hello.o $(prefix)/usr/module

Copyright © 2002 Embedix, Inc. Embedix SDK Tools Addendum – October 2002 23

Step 4: Import a New GNU Tool Chain
Initially, the Embedix SDK shipped GNU tool chains which were minimally patched to facilitate
cross-development and build. However, with changes to these tools and an update to our build
engine, we now fully support “stock” GNU tools. This feature puts our customers in a position to
replace/upgrade the Embedix provided tools at any time.

There are times when you may want to update the original Embedix GNU toolchain (i.e. gcc, gdb,
ar, etc.) with newer versions. These times may include:

1. Bug fixes

2. Newer versions become available

3. New optimizations are required to support your new BSP.

4. Your own engineers have integrated custom changes as required by your project.

5. Given libraries/kernels may require specific tool versions.

The GNU tool chain consists of a number of different utilities which facilitate application build, link,
assembly, and debug (among many other tasks).

Note: The Embedix SDK CD includes documentation on these tools in the following
directories:

/documents/gcc.gnu.org/onlinedocs/...

/documents/www.gnu.org/binutils-2.12/html_node

Typically (according to architecture type and language support), these GNU tools include the
following:

GNU Tool Elements
The lists below provide information for what elements are generally included within the “gnu tool
element” category. Those designated with a “*” are mandatory for functioning within Embedix
SDK for compilation of C applications and the kernel. Other components can be considered to be
optional (though highly recommended).

GCC:
Gnu Compiler Collection (See : http://gcc.gnu.org/)

GCC consists of a number of different applications or programs which collectively support a
diverse set of compilation scenarios. Common files appearing within Linux systems include:

• c++

• cc *

• cpp *

• g++

• gasp

• gcc *

• gcov - gcov is a tool you can use in conjunction with GNU CC to test code coverage in
your programs.

http://gcc.gnu.org/

24 Embedix SDK Tools Addendum – October 2002 Copyright © 2002 Embedix, Inc.

GDB:
Gnu Debugger (See: http://www.gnu.org/manual/gdb-5.1.1/html_node/gdb_toc.html)

GDB enables dynamic or post-mortem debugging of programs. A graphical “front end” for GDB
called the Data Display Debugger [DDD] can be used in conjunction with GDB if desired.

Binutils:
The GNU Binutils (see: http://www.gnu.org/software/binutils/binutils.html) are a collection of
binary tools. The main ones are:

• ld * - the GNU linker.

• as * - the GNU assembler.

But they also include:

• addr2line * - Converts addresses into filenames and line numbers.

• ar * - A utility for creating, modifying and extracting from archives.

• c++filt - Filter to demangle encoded C++ symbols.

• gprof - Displays profiling information.

• nlmconv - Converts object code into an NLM.

• nm * - Lists symbols from object files.

• objcopy * - Copys and translates object files.

• objdump * - Displays information from object files.

• ranlib * - Generates an index to the contents of an archive.

• readelf * - Displays information from any ELF format object file.

• size * - Lists the section sizes of an object or archive file.

• strings * - Lists printable strings from files.

• strip * - Discards symbols.

• windres - A compiler for Windows resource files.

Other Software:
Other software necessary for the functioning of a cross-compile environment within Embedix SDK
include:

• depmod * -

• ldconfig * - configure the a.out shared library cache

• ldd * - list dynamic object dependencies

• protoize

• unprotoize

http://www.gnu.org/software/binutils/binutils.html

Copyright © 2002 Embedix, Inc. Embedix SDK Tools Addendum – October 2002 25

Locating Updated GNU Tools
Since GNU tool chains are built from open sources, they can be obtained from various internet
locations or from alternative embedded Linux providers.

As of the writing of this document, some good places to look for these tools include:

Architecture URL

ARM (including xScale) http://www.emdebian.org/downloads.htm
http://www.ocdemon.com/OCDemonLinux.html
http://www.arm.linux.org.uk/developer/tools.shtml
http://www.lart.tudelft.nl/lartware/compile-tools/

PPC http://www.emdebian.org/downloads.htm
http://www.ocdemon.com/OCDemonLinux.html

MIPS http://www.ocdemon.com/OCDemonLinux.html

Toshiba TX49 http://www.ocdemon.com/OCDemonLinux.html

Gnu Tool Naming
A specific tool chain is tied to specific versions of BSP(s). That is, a BSP for a MIPS architecture
requires that MIPS cross-compile tools be used.

Embedix SDK uses architecture specific cross-compiler prefixes to specify the appropriate
versions of cross-compile tool chains.

Tools prefixes currently employed by Embedix BSPs include the following:

Tools Prefix Architecture

i386-linux- x86

arm-linux- ARM

m68k-elf- 68k

mipsel-linux- Little Endian MIPS

native-linux- x86 host

powerpc-linux- Power PC

sh3-linux- Hitachi SH3

sh3eb-linux- Hitachi SH3 Big Endian

sh4-linux- Hitachi SH4

http://www.emdebian.org/downloads.htm
http://www.ocdemon.com/OCDemonLinux.html
http://www.arm.linux.org.uk/developer/tools.shtml
http://www.lart.tudelft.nl/lartware/compile-tools/
http://www.emdebian.org/downloads.htm
http://www.ocdemon.com/OCDemonLinux.html
http://www.ocdemon.com/OCDemonLinux.html
http://www.ocdemon.com/OCDemonLinux.html

26 Embedix SDK Tools Addendum – October 2002 Copyright © 2002 Embedix, Inc.

Tools Prefix Architecture

sh4eb-linux- Hitachi SH4 Big Endian

New tools intended to replace the default Embedix tools should be named with the same prefix
and placed in the appropriate directory as shown below. Tools intended to be used for only a
specific set of BSPs can be named with an arbitrary prefix, provided that the BSP configuration
file (described below) includes that arbitrary prefix in its “%cross” field.

The cross-compiler prefix used by any one Embedix BSP can be found by looking at the
bsp_config file located in /opt/Embedix/bsp/BSP_NAME/config-data/buildcontrol/bsp_config and
noting the value of the “%cross” field. Alternatively, you can view this from the BSP
Configuration Wizard, called from target wizard by:

FILE -> RUN_WIZARD -> BSP CONFIG EDITOR

New Tools Integration Steps
When installing different GNU toolchains, you should confirm that all elements from the “GCC”,
“GDB”, “binutils” and “Other Software” categories above are present with the architecture specific
prefix when installing them to the directories noted below.

Important Notes:

In general, Tools listed within the GCC and binutils categories may NOT be “mix and match”
combined. That is, the updated tools software should include the full suite of applications
required. It should not rely on a new piece here and an older piece there. These must be
internally consistent as a set.

Those elements listed in the “GDB” and “Other Software” categories may often be mixed with
newer GCC and binutils versions.

GCC Elements:
The Embedix SDK builder utilizes search paths using software from the first location in a path list
where those tools are found.

Embedix default tools shipped with individual Embedix Board Support Packages (BSPs) are
placed in: /opt/Embedix/tools/bin. Replacement toolchains may be installed anywhere under
/opt/Embedix, as long as appropriate “%cross” and “%xdir” directives are placed in a
governing bsp_config or .lbc file (depending on project vs. package scope for use of the tools).

Note: Since the Builder.pm machinery operates while chrooted to /opt/Embedix, using
“/opt/Embedix/” as a path prefix in the “%xdir” path is transparent.

Builder.pm may be found in multiple locations:
/opt/Embedix/home/<user>/<project>/emb-bin/Builder.pm

/opt/Embedix/bsp/<board>/emb-bin/Builder.pm

/opt/Embedix/emb-bin/Builder.pm

Copyright © 2002 Embedix, Inc. Embedix SDK Tools Addendum – October 2002 27

If modification of Builder.pm is called for, you should modify only one of these files. You should
modify the <project> version if present. If there is no <project> version then you should
modify the <board> version. If no <project> or <board> version is present then you can
modify the /opt/Embedix/emb-bin/ version, or preferably copy it to <project> or <board> and
modify the copy.

Note: Although you have installed a new tools version, the old tools are still in place and you can
usually explicitly use them (on a per package basis) by modifying the package’s LBC with
something like:

CC=/opt/embedix/tools/bin/mipsel-linux-gcc

, or by using “%xdir” / “%cross” directives in <pkg>.lbc

GCC from other Linux Sources
Often it is possible to download a working architecture tool chain from other Linux providers, open
source web repositories, or from silicon manufacturers.

These tool chains, provided stand-alone, or incorporated into a larger “BSP”, are often delivered
in the form of “tarballs” or RPM files.

Tools provided as tarballs can be placed within Embedix SDK by doing something like the
following:

cd /opt/Embedix

tar –tzvf <path>/random_toolchain.tar.gz

 to check the sanity of paths
tar –xzvf <path>/random_toolchain.tar.gz

Edit “%cross” / “%xdir”, in the bsp_config or <pkg>.lbc file to match the new
toolchain target prefix.

Tools provided in RPM format can be used if they have been packaged as re-locatable RPMs. If
these are re-locatable, then it is a simple matter to install these tools to the proper directory by a
command such as:

rpm –ivh --prefix /opt/Embedix/<desired_location>
your_tools.i386.rpm

Cross Development Tools provided by other Linux vendors which do not install to
/opt/Embedix/usr/local/bin can be used if an “%xdir” field is added to an appropriate
bsp_config (for project scope) or <pkg>.lbc.

 Example: %xdir

 /opt/Embedix/usr/local/mipsel-linux/bin

TimeSys (TM) tool-chain import example:
TimeSys (http://www.timesys.com) is an embedded Linux provider which supplies board support
packages for free download. These BSPs generally include a number of hooks for TimeSys’

http://www.timesys.com/

28 Embedix SDK Tools Addendum – October 2002 Copyright © 2002 Embedix, Inc.

development and analysis tools and for their real-time solutions. The full GNU tools suite is
provided as a part of these BSPs. A typical TimeSys BSP is packaged in two separate tarballs.

The steps shown below are typical for importing a TimeSys provided tool chain into the Embedix
SDK.

For example, the TimeSys 3.1 MIPS BSPs has tslinux-3-1-vr5500-bsp239.tar.bz2.

1. Download tslinux-3-1-vr5500-bsp239.tar.bz2.

2. tar xjvf tslinux-3-1-vr5500-bsp239.tar.bz2 -C /tmp

2.5. tar tjvf /tmp/tslinux-3-1-vr5432-
bsp239/crosstools/toolsuite.vr5432.tar.bz2

 - look for naming collisions with anything already in /opt/Embedix/

If safe (or after saving off colliding files):

3. tar xjvf /tmp/tslinux-3-1-vr5432-
bsp239/crosstools/toolsuite.vr5432.tar.bz2 -C /opt/Embedix

4. add “%xdir” / “%cross” directives in build control files (see
discussion above)

MontaVista Software (TM) tool-chain import example:
MontaVista Software (http://www.mvista.com) is an embedded Linux provider producing “BSPs”
which generally include enhanced real-time performance. A typical MontaVista BSP consists of a
set of RPM files which install, among other items, the cross-compile tool chain to the host
development platform.

For example, a version of a MV BSP for PPC 7xx has a redhat62/hhl-cross-ppc_7xx-gcc-2.95.3-
hhl2.0.2.i386.rpm

1. rpm -qpl hhl-cross-ppc_7xx-gcc-2.95.3-hhl2.0.2.i386.rpm

2. Observe that rpm contents will be installed to /opt/hardhat

3. cd /opt; ln -s Embedix hardhat; cd /opt/Embedix; ln –s . hardhat

4. rpm -i --nodeps hhl-cross-ppc_7xx-gcc-2.95.3-hhl2.0.2.i386.rpm

5. add “%xdir” / “%cross” directives in build control files (see
discussion above)

Building your own Tool Chain
Building tool-chains is a non-trivial process and should not be attempted by the novice developer.
The GCC documentation located on the Embedix CD provides adequate information on this
process, however a few additional hints specific to integration with Embedix SDK are provided
below. Note that this is not meant to be a comprehensive tutorial on building tool chains:

• When configuring the toolchain, use
“--prefix=/opt/Embedix/<your_choice>”

• When designating libc and kernel headers to be used in the toolchain, designate headers
from your BSP’s kernel and libc sources.

Copyright © 2002 Embedix, Inc. Embedix SDK Tools Addendum – October 2002 29

Binutils:
A cross-assembler and cross-linker as provided by binutils are required
by the Embedix cross-build engine. If alternate binutils are needed,
they can be placed anywhere under /opt/Embedix (with appropriate “%xdir”
/ “%cross” directives in build control files if they don’t wind up in
usr/local/bin/).

/opt/Embedix/usr/local/bin

Below is a table of the tools you should minimally put in this directory:

• `as' This should be the cross-assembler.

• `ld' This should be the cross-linker.

• `ar' This should be the cross-archiver: a program which can manipulate archive files
(linker libraries) in the target machine's format.

• `ranlib' This should be a program to construct a symbol table in an archive file.

Other binutils files should be placed in this same directory.

Libraries:
If you want to install libraries to use with the cross-compiler on Embedix SDK, such as a standard
C library, put them in the directory /opt/Embedix/<your_choice>/lib

`/usr/local/target/lib'; installation of GNU CC copies all the files in that subdirectory into the proper
place for GNU CC to find them and link with them.

Header Files
Architecture specific header files should be placed under the directory /
opt/Embedix/<your_choice>/include, before building the cross compiler.

Modifying tc.config
The directory /opt/Embedix/tools/ contains a number of files ARCHNAME.tcconfig. This file
was used to specify parameters for old style [Lineo modified] toolchains. This file is not
necessary for imported toolchains since “%toolchains” is superceded by “%cross” in the
bsp_config file.

 Testing New Tool Chains
It is advisable to perform a test of new tool chains prior to a build within Embedix SDK.

As a simple test, a hello world application can be written, and the toolchain exercised, using the
Package Editor.Please see Embedix SDK Tools user guide for further instructions on Package
Editor usage.

30 Embedix SDK Tools Addendum – October 2002 Copyright © 2002 Embedix, Inc.

Step 5: Import New Applications and Services
One of the advantages of starting from an existing Embedix BSP is that the you already have a
proven set of applications and services which run the target architecture.

If you desire to integrate more functionality into your BSP, you should reference the Package
Editor or DBIT to import the following application types:

• Device Drivers

• Build-from source applications

• Binary applications

You can also easily import new applications or configuration files by simply copying them to the
project’s /merge directory. Any file which appears underneath of the /merge directory will be
placed into the same location on the target root file system. If duplicate file names occur, those
under the /merge directory supercede (i.e. over-write) those which are provided or generated via
Target Wizard.

Step 6: Modify the Deployment Wizard
The final component of a BSP for Embedix SDK is the deployment wizard. While not required
(i.e. you can always perform a manual deploy), this feature allows complete simplification of the
development process, allowing the customer to focus on their own applications rather than the
details of board support. For those who wish to complete deploy to the target device without
having to write this deployment wizard, we’ve included a section describing how to do a manual
deploy at the end of this section.

Deployment Architecture
This section explains the architecture of how deployment scripts are used and called by Target
Wizard.

Important Files
• /opt/embedix/emb-bin/emb_deploy - This is the python script that is called directly by

TW. It determines what script to call as the deployment script. It first looks in the
<project>/emb-bin directory to see if any deployment scripts exist there (any scripts that
end in _emb_deploy) and invokes that script if it exists. Otherwise it invokes a generic
deployment wizard that offers minimal functionality.

• /opt/embedix/emb-bin/generic_emb_deploy - this is a generic deployment wizard that
offers the ability to generate the file system for that target as a directory tree in a location
of the user's choice.

• /opt/embedix/bsp/<bsp-name>/emb-bin - This is where board specific deployment
wizards should be placed. All files in this directory will be copied to <project>/emb-bin
when a project is created for this board

• <project>/emb-bin - This is where the deployment script for a specific project resides.

• /opt/embedix/emb-bin/pagelib.py - This is a library of commonly used pages. This
includes pages to build the file system and show the log, run lipo, etc. To use these

Copyright © 2002 Embedix, Inc. Embedix SDK Tools Addendum – October 2002 31

pages, import pagelib and subclass specific pages, overriding methods and variables
where necessary. Detailed instructions are given below.

Sequence of events when deploying
When the user wants to deploy to the target for testing, he can invoke the deployment script in
one of two ways.

1. Click on the deployment button in Target Wizard.

2. run /opt/embedix/emb-bin/emb_deploy from the command line with project and board
arguments:

o /opt/Embedix/emb-bin/emb_deploy --projectdir /home/chrisb/project/intel --board
i386_default

Either method will start the script /opt/embedix/emb-bin/emb_deploy. This script will then scan the
<project>/emb-bin directory looking for deployment scripts (anything ending in _emb_deploy). If it
finds one then it will run that script and exit. If it doesn't then it will run the generic script located at
/opt/embedix/emb-bin/generic_emb_deploy. It's important that only one deployment script be
located in <project>/emb-bin because if two exist, emb_deploy will run the first one it finds and
that might not be the one that you want. Also note that the deployment script in <project>/emb-bin
should not have a .py suffix.

Deployment Phases
There four main "phases" that should occur when a deploying. Here is a general description of
each and possible steps that would occur in each phase.

• Root FS Prep - This includes things that prepare the image (file system, kernel, etc) for
deployment. It should only include steps that are orthogonal to the method of
deployment. (ie don't do something here that would only need to be done when doing an
NFS deploy) Possible steps for this phase include:

o Build the root file system

o Run lipo on the resulting file system

• Host Setup - This includes things that prepare the host system for deployment.
Depending on what deployment methods are being used in the script, this step might not
even be needed (if you are doing deployment on floppy disks for instance). Very often,
these steps will only need to be performed once on the host machine. Possible steps for
this phase include:

o Gather host information (ip address, hostname, etc.)

o Start host services (tftp, NFS)

o Modify configuration files on host.

• Target Setup - This includes gathering information about the target system that will be
needed prior to deployment. As in the Host Setup phase, this may be optional depending
on deployment type. Possible steps here include:

o Gather target information (MAC address, target address, etc.)

o Giving instructions to the user about how to configure firmware on the target

• Deployment Action - This phase is where the deployment actions actually take place.
Possible steps here include:

o Making a deployment boot disk for target

o Flashing the kernel and or file system to target memory

32 Embedix SDK Tools Addendum – October 2002 Copyright © 2002 Embedix, Inc.

o Giving instructions to the user about how to tftp the kernel to the target and boot
it.

A note about host setup:
Often, part of deploying will include modifying host configuration files and starting or restarting
host services. One example of this is NFS deployment. To deploy using NFS, the /etc/exports file
needs to be modified and NFS needs to be restarted. You should never modify host configuration
files without asking the user first. The best way to do this is by making it an option with a
checkbox. When making modifications to a configuration file, you should add a comment where
you've made the modification and should explain what changed and why. In addition, you should
make a backup version of the configuration file so that the user may revert to the old configuration
if desired. Use a numbered backup so that the next time the deployment is run it doesn't backup
over the original backup file. Routines are provided by the wizard system and pagelib.py to make
it easier to perform these steps.

Writing a deployment wizard

Getting Started
In order to write a deployment wizard, you need to know python and understand the wizard
framework. Python is a scripting language similar in power to perl, but with a syntax that is a bit
more readable and maintainable. It also is strongly object oriented. If you are familiar with
programming, you should be able to learn python in about a day with a good book.

The deployment wizards also make use of QT bindings for Python. A good starting point is to
reference the PyQt documentation located at:
http://www.riverbankcomputing.co.uk/pyqt/index.php

In addition, there are a series of example wizards that get installed with the wizard system at
/opt/embedix/lwiz1.0/examples. These wizards are fully commented and range from the most
basic wizard possible to a somewhat complex wizard with interdependencies, progress bars, and
many types of widgets.

Once you understand the basics of python and the wizard framework, the best way to write a
deployment wizard is to read and understand the rest of this documentation and then look at
some real deployment wizards to see how they use all of these concepts. Most likely the best files
to look at are:

• /opt/embedix/emb-bin/generic_emb_deploy

• /opt/embedix/emb-bin/pagelib.py

You can also take a look at board specific deployment wizards. These are located in:

/opt/embedix/bsp/<board-name>/emb-bin/*_emb_deploy

Using the page library (pagelib.py)
There are many tasks that are common to deploying, independent of board type and deployment
method. These include:

• Building the target file system as a directory tree

• Running lipo

In order to reduce duplication of effort, a library of commonly used pages has been created in
/opt/embedix/emb-bin/pagelib.py. This library consists of pages that may be sub-classed in a

Copyright © 2002 Embedix, Inc. Embedix SDK Tools Addendum – October 2002 33

deployment wizard. Some pages require that you place specific values in variables or the
database for the pages to work. One such page is the lipo prompt page. Here is an example of
how to use that page in a wizard of your own design.

If you look at the source for these pages in pagelib.py you'll read the following documentation:
__doc__ = """
 to inherit from this page, the database must have:
 TARGETFS - root of the directory tree
 PROJPATH - path to the project
 ARCH - the architecture of the project (right now mipsel-linux
and i386-linux)
 """
That means that we'll need to set those values in the database in order to use this page. Here is
the code that uses both lipo pages from the i386 deployment wizard:

import pagelib
class lipo_prompt_page(pagelib.lipo_prompt_page):
 name = "lipo_prompt"

 def post(self, database):
 database["TARGETFS"] = database["PROJPATH"] +
"/tmp/rootfsdir"
 database["ARCH"] = "i386-linux"
 pagelib.lipo_prompt_page.post(self, database)
 return 1

class lipo_lib_page(pagelib.lipo_lib_page):
 pass

The first thing we do is subclass pagelib.lipo_prompt_page, thus inheriting all methods and
variables from that class. Every page includes it's own name, step, description, and help_string
variables, but we decided to override the name variable. We also overrode the post routine to set
the needed values in the database (PROJPATH was a value set in an earlier page so we don't
need to set it here) The post routine then calls the post routine of the super class
(pagelib.lipo_prompt_page). It's important that if you override a method, you still make a call to
the original page's method or it might not do what you expect. In this case lipo is run in the post
method so we need to call it since it is not called if we override it.

Notice that we didn't make any changes to the lipo_lib_page at all. The pass is just there because
a class must contain at least one statement and pass acts like a no-op. It's important that you
sub-class a page even if you don't need to make any changes to it. That way, if you need to make
changes, you can simply add the modifications later to the subclass. Also, if you don't subclass it,
that page is not brought into the local scope of the wizard and it won't be instantiated by the
wizard engine.

It's important that pagelib be imported by the statement: import pagelib and not
from pagelib import *

In the latter case, all pages in pagelib would enter the namespace of the wizard module and they
would all be instantiated by the wizard engine which would slow things down. Even worse, there
is the possibility that you might have a page class with the same name as a class in pagelib, or
there may be two classes that have their name variable set to the same string. This would wreak
havoc when the wizard engine tried to display a page with that name.

34 Embedix SDK Tools Addendum – October 2002 Copyright © 2002 Embedix, Inc.

Running shell commands from within the wizard
Most often when trying to deploy an image, you will need to execute a number of shell
commands. The best way to accomplish this in python is through the use of the os.system call.
This method will execute a script in a sub-shell and return the exit code of the command. The
string need not be limited to one line in length. here is a brief example:

#we're assuming here that database already has entries
#for PROJPATH, BOOTDIR, KERNELPATH, and INITRDPATH
import os
command = """
cd %(PROJPATH)s
if [! -d %(PROJPATH)s/%(BOOTDIR)s] ;
then
 mkdir -p %(PROJPATH)s/%(BOOTDIR)s
 if [0 -ne $?] ; then exit 1 ; fi
fi
cp %(KERNELPATH)s %(PROJPATH)s/%(BOOTDIR)s
if [0 -ne $?] ; then exit 2 ; fi
cp %(INITRDPATH)s %(PROJPATH)s/%(BOOTDIR)s
if [0 -ne $?] ; then exit 3 ; fi
""" % database

status = os.system(command) >> 8

if status:
 print "There was an error on command #", status

The command string is created using triple quotes, meaning that you can use newlines and single
quotes without problems. it also uses string substitution from the database. The %(PROJPATH)s
in the triple quoted string will be replaced with value of database["PROJPATH"] provided that
database is a python dictionary and the entry "PROJPATH" in that dictionary is a string. Make
sure that you add % database after the string and that all entries you use in the command string
are also in the database or you'll have problems.

Also, you'll notice that the shell fragment checks the status code of each command and exits with
a specific code if it is non-zero. The line:

status = os.system(command) >> 8

runs the command and returns the exit status code (this will be zero if everything went fine). Don't
worry about the >> 8. Just know that you need it because of the way that os.system works.

Running as Root
Deploy scripts should NOT use suwrapper. Instead, you should include the following magic string
somewhere in your script (preferable at the top, below #! /opt/Embedix/lwiz1.0/usr/bin/python
line.) and the whole script will be run as root (thus eliminating the need for suwrapper).
#**RUN AS ROOT**

This string must be on it's own line and must begin at the first character of that line. That is, this
will work:

#**RUN AS ROOT**

 ... and this will not

Copyright © 2002 Embedix, Inc. Embedix SDK Tools Addendum – October 2002 35

 #**RUN AS ROOT**

Because including this string will cause the script to be run as root, the script should not check
the uid of the process. Many old scripts would check to see if they were being run as root and
display a warning box if they were. If you have copied your code from an old deployment script,
you need to remove this check.

Utility Functions
In addition to pagelib.py there is also a python module, wizutil.py, that contains methods to
accomplish many common tasks, these include:

• parsing and writing configuration files - these are used to write the a database to a file so
that values entered in once by the user can be persistent.

• string substitution in files - used to alter configuration files

• making numbered backups of files

• checking to see if a string is in a valid ip address format

• showing a busy indicator window when executing a long command

Look at the file located in /opt/embedix/lwiz1.0/usr/lib/python2.0/site-packages/wizutil.py to see
each of the utility functions. Each function contains comments about usage.

Deployment Guidelines
You can use the following as a checklist of features (or feature attributes) in your deployment
script:

• Don't have a first page that consists of just "Welcome"

• Do follow the general sequence:

o Root FS Prep, Host Setup, Target Setup, Deploy Action

• Don't modify host configuration files without asking the user

• Do provide a checkbox and allow the user to:

o skip modification of host configuration files

o see detailed instructions for modifying host configuration files

! (see nfs pages in pagelib.py for an example)

• Do make incremental backups of modified host configuration files

• Do annotate modifications to host configuration files

• Do provide at least the basic "install to directory" option in EVERY deployment wizard

• Do utilize as much functionality as possible from pagelib.py, in order to have consistent
look, feel, and operation of your script.

• Do put board-specific auxiliary programs in <board>/emb-bin

• Do put the script itself in <board>/emb-bin, with a name ending in "_emb_deploy".

• Do include the following magic string somewhere in the deployment script on it's own line
(preferable on the top) so that it is run as root (regardless of who started Target Wizard):

o #**RUN AS ROOT**

36 Embedix SDK Tools Addendum – October 2002 Copyright © 2002 Embedix, Inc.

o Do NOT use the "running as root" warning dialog at the beginning of the script.
The scripts now run as root by default.

o Do NOT use suwrapper for individual sub-commands run by the script (this is not
necessary, since the script now runs as root)

Deployment Hooks

Requirements
Allow hooks into deployment so that deploys can be modified without changing the python source

deploy_page
The standard page class used in the wizard framework has been sub-classed. The new page
class is called deploy_page. This new class allows hooks for pages and packages. The post
method of the page class has been overridden and does the following:

• call the validate method (will return 1 if OK and 0 if not OK)

• call save_config method

• call the do_action method with pagename + _action (this is where the action happens)

The two new methods, validate and action have both been defined. Users who wish to do their
own validation need to override the validate method. The action method should typically not be
overridden as it is the method that looks for and calls the page and package specific hooks.

You may override the post method and make your own calls if you like. It should be easy to call
do_action, validate, and/or save_config from anywhere in the post method if you want. In
addition, if you would like to have the above post functionality, but want to do some processing or
logic beforehand then you can call the super-class method:

Copyright © 2002 Embedix, Inc. Embedix SDK Tools Addendum – October 2002 37

example:
class foo_page(deploy_page):
 #normal stuff here
 def post(self, database):
 #do some logic, processing, etc.
 #now call the super-classes post method
 return deploy_page.do_action(self, database)

below is a brief rundown on the added methods:

Validate(self,database)
Validate by default just returns a 1 indicating that everything is ok. If a user wishes to validate
entries received from the database, they may be examined here. Validation Boxes may be used
as well. If you override this method, make sure that you return a 1 if the wizard may proceed and
a 0 if you wish to stay on this page. If a 1 is returned then the database will be saved to a config
file (for persistence if the wizard is cancelled) and the action method is called. Here is a brief
example:

class foo_page(deploy_page):
 #normal stuff here for layout, etc

 def validate(self, database):
 if not os.path.exists(database["KERNEL_PATH"]):
 ValidationBox("Bad Kernel Path", """
 You did not enter a valid kernel path.
 Please enter a location that really does exist!""")
 return 0
 return 1

save_config(self, database)
This method saves the all of the database values to a deployment config file:

<project>/build/projectstate/deploy.conf

This file is automatically loaded by the deploy_setup() function that should be called in the start()
routine of a wizard that uses this framework.

do_action(self, database, action)
The action method is the basic hook mechanism. It scans the deploy.ldc file for a section that
matches the parameter action that was passed in. If it finds that section then it executes the
section in the log window with the values in the database exported to the environment.

This means that if database["FOO"] = "BAR" in the python script, you can use $FOO in the shell
fragment for that section.

The default post method makes the call:
do_action(self, database, self.name.lower() + "_action")

So if a page has the name build_fs, then post runs the action build_fs_action.

In addition, if the section of the deploy.ldc file that is to be executed contains the magic string:
 #**RUN FROM PACKAGE LBC %<section>**

Then it will make the call:

38 Embedix SDK Tools Addendum – October 2002 Copyright © 2002 Embedix, Inc.

self.do_package_sections(database, <section>)

do_package_sections(self, database, lbc_section)
When this method is called, it will make a list of all packages that are turned on for the project.
For each package, it will look for an lbc (in local, board, generic order) that has the specified
section in it. If that section is found then it is run with the database values exported and the
buildvars for that package exported to the environment as well.

Usage notes
The "hooks" feature allows people to modify deployment behavior without changing the python
deployment scripts. This makes it possible for people to add functionality without knowing python
or anything about the wizard architecture.

Importing deploy_page
Because this framework is intended to be used by deployments for BSPs and is not intrinsically
part of the wizard system, you will need to import deploy_page yourself in the python deployment
script. If you are using the Embedix SDK 2.4-1 then deploy_page will be in a standard location
that python will find. The code to import deploy page is below:

Stuff needed to use deploy_page classes and functions ####
#append the project's emb-bin directory to the system path
import sys, os
if len(sys.argv) < 2:
 print "The project directory must be specified on the command line"
 sys.exit(1)

try:
 from deploy_page import *
except:
 print "Could not import deploy_page.py"
 print "project directory is", sys.argv[1]
 print "sys.path = ", sys.path
 sys.exit(1)
done with deploy page stuff ####

You should place this code at the top of your wizard script in order to import the deploy_page
correctly. If deploy_page.py is in your <project>/emb-bin directory and the deploy script is being
called with either emb_deploy or from Target Wizard then this will definitely work.

Calling deploy_setup(database)
In order to set up the deploy framework, the function deploy_setup must be called with the
database as the argument. This function takes care of the following tasks:

• parses sys.argv and sets database["PROJPATH"] and database["EMB_BIN"]

• loads deploy.conf file (this file holds old database values for persistence)

• checks for existence of lock file and shows a dialog if it does exist

• creates lock file and sets the exit function to remove lock file

• removes any old log files if they exist

Copyright © 2002 Embedix, Inc. Embedix SDK Tools Addendum – October 2002 39

• sets database["logfile"] to be <project>/deploy.log

• adds /opt/embedix/bin and /opt/embedix/emb-bin to front of $PATH

You should call this from the start method of your wizard. If you plan on doing nothing else then
the code should look like this:

def start(database):
 return deploy_page.deploy_setup(database)

The LDC File
When using the deployment hooks, the main file of concern is:
<project>/build/projectstate/deploy.ldc

This is an lbc-style file that contains actions to occur after each page is executed. When the next
button is clicked on a deploy page, the wizard calls the validation routine for that page (if there is
one) and then looks at the deploy.ldc file for a section called <page_name>_action. If that section
is found then it is executed in a log window. Here is a brief example from a deploy script:

---- extracted from the deploy python script ----
class build_fs_page(deploy_page):
 name = "build_fs"
 step = "Build Filesystem"
 description = "This step builds the filesystem that will be
placed on the target."

 def layout(self, database):
 self.add_widget(label_widget("""
When you click on Next, the filesystem will be built. This may take a
minute or so. The log of the build will be displayed in a separate
window. When the build is done, the root of the target directory tree
will be %(PROJPATH)s/tmp/rootfsdir. You may examine the log of the
build. Afterwards click OK on the log window proceed""" % database))
 self.add_widget(checkbox_widget("Rebuild Filesystem",
"REBUILD_FS", "1"))
 self.add_widget(checkbox_widget("Add Merge Directory
Contents", "ADD_MERGE", "1"))
 self.add_widget(checkbox_widget("Add Kernel to boot
directory of target filesystem", "ADD_KERNEL", "1"))

---- below is a section of the deploy.ldc file ----
%build_fs_action

if ["${REBUILD_FS}" = "0"] ; then option1="--nobuildfs"; fi
if ["${ADD_MERGE}" = "0"] ; then option2="--nomerge"; fi

/opt/Embedix/emb-bin/emb_mktimage.py --projectdir ${PROJPATH}
${option1} ${option2}
if ["${ADD_KERNEL}" = "1"] ;
then
 mkdir -p ${PROJPATH}/tmp/rootfsdir/boot
 cp ${IMAGEPATH} ${PROJPATH}/tmp/rootfsdir/boot
fi

40 Embedix SDK Tools Addendum – October 2002 Copyright © 2002 Embedix, Inc.

The action name is build_fs_action because the page name is build_fs. It is important that page
name's do not contain spaces in them. Since the user only sees the page step string in the title of
a page and not the name, it should not be difficult to keep spaces out of the name.

Notice In the above example, IMAGEPATH has already been set and PROJPATH is always in
the database by default as the project directory path. Notice that the variables used for the
widgets in the python script can be used as shell variables in the section of the ldc file. You can
reference any database value as a shell variable in these sections. They will always be exported
as strings so 5 will become '5'. If you wish to call a seperate binary file, you can call it from within
this section. $EMB_BIN is a shell variable containing the path to the project's emb-bin directory
so if you had some binary, foo, that you wanted to run on the target directory tree, you could use
a line like:
$EMB_BIN/foo $TARGET_ROOT

The built in deploy variables are:

• $PROJPATH - path to the project directory

• $EMB_BIN - path to project's emb-bin directory

• $TARGET_ROOT - path to the root of the target directory tree

The output of all commands will be sent to a log box in a window for the deploy wizard.

Package Deploy Configuration
In addition to allowing shell script hooks to be called for each individual page, it is also possible to
call specific sections of a package's lbc file for execution at specific points during deployment.

When the wizard looks for the action section of the ldc file for a page, it also looks for a magic
string:
RUN FROM PACKAGE LBC %<section>

Where section may be any string. When the wizard sees this, it then checks every package's lbc
file for the section specified and if it find's it, that section is executed with the output going to the
same log window that the action output went to. This is probably best explained with an example.

Here is the above section that builds the filesystem, but including the magic string to invoke
package level deploy configuration.

Copyright © 2002 Embedix, Inc. Embedix SDK Tools Addendum – October 2002 41

---- from deploy.ldc ----

%build_fs_action

if ["${REBUILD_FS}" = "0"] ; then option1="--nobuildfs"; fi
if ["${ADD_MERGE}" = "0"] ; then option2="--nomerge"; fi

/opt/Embedix/emb-bin/emb_mktimage.py --projectdir ${PROJPATH}
${option1} ${option2}
if ["${ADD_KERNEL}" = "1"] ;
then
 mkdir -p ${PROJPATH}/tmp/rootfsdir/boot
 cp ${IMAGEPATH} ${PROJPATH}/tmp/rootfsdir/boot
fi

#**RUN FROM PACKAGE LBC %deploy**

When the wizard runs the above action shell fragment, it will see the magic string. It will then
make a list of all packages that are enabled for the current project. From there it will scan every
package's lbc file (in local, board, generic order) looking for a “%deploy” section. For each
deploy section that it finds, it will execute the shell fragment. The buildvars for that specific
package will be exported to the environment during execution of the shell fragment so that this
process can take advantage of configurability allowed by Target Wizard.

Here is a trivial example I used for testing for nano.

First, I modified nano's ecd to add some basic buildvars:

<GROUP Textprocessing>
 <GROUP Editor>
 <COMPONENT nano>
 DEFAULT_VALUE=0
 <HELP>
 nano (Nano's ANOther editor) - the small, capable,
 text editor formerly known as TIP (TIP Isn't Pico).
 It aims to emulate Pico as closely as possible while
 also offering a few enhancements.
 </HELP>
 KEEPLIST=/usr/bin/nano
 MIN_DYNAMIC_SIZE=0
 PROMPT=Include /usr/bin/nano?
 BUILD_REQUIRES=ncurses
 <REQUIRES>
 libncurses.so
 libc.so.6
 ld-linux.so.2
 </REQUIRES>
 SRPM=nano
 STATIC_SIZE=51966
 STORAGE_SIZE=132075
 TYPE=bool

 #added new stuff here
 <OPTION nano_variable>
 PROMPT=Set a nano string variable?
 BUILD_VARS=nano_var=$VALUE

42 Embedix SDK Tools Addendum – October 2002 Copyright © 2002 Embedix, Inc.

 TYPE=string
 </OPTION>
 <OPTION nano_number_variable>
 PROMPT=Set a nano number variable?
 BUILD_VARS=nano_number_var=$VALUE
 TYPE=int
 </OPTION>
 #end of new stuff
 </COMPONENT>
 </GROUP>
</GROUP>

Notice that there are two variable options. Both of them can be set from Target Wizard. One is an
integer and another is a string.

Then I added a section to nano's lbc file:

%deploy
echo "This is the deploy section for nano"
echo "the variable nano_var is ${nano_var}"

cat <<TXT > ${TARGET_ROOT}/nano.test
this is a test for nano.
The target root filesystem on host is at:
${TARGET_ROOT}
I hope that worked.
The string entered in Target Wizard is:
${nano_var}

The number string entered in Target Wizard is:
${nano_number_var}
TXT

All this does is write a file called nano.test to the root of the target filesystem that contains the
buildvars in it. This example is somewhat trivial, but shows how the system could be used. With
the functionality of running arbitrary sections from an lbc file, packages could contain more than
just one shell fragment to run at different times.

For example, consider the following deploy.ldc file and package.lbc file:

---- ldc file portion ----
%build_fs_action
#stuff here
#**RUN FROM PACKAGE LBC %makefs**

%make_cd_action
#stuff here for making a cd
#**RUN FROM PACKAGE LBC %do_cd_stuff**

---- part of some packages lbc file ----
%makefs
#include stuff here to occur right after building the
#target file system

%do_cd_stuff
#include stuff here that you want to occur right after

Copyright © 2002 Embedix, Inc. Embedix SDK Tools Addendum – October 2002 43

#making a CD

Files
The framework python file named deploy_page.py is located in the
/opt/embedix/lwiz1.0/usr/lib/python2.0/site-packages directory

A set of example files can be found in the examples directory on the CD-ROM. Examine the
README file there for instructions on using the example files for the deploy hooks feature.

Manual Deployment
If you do not want to spend time on customizing the deployment wizard, it is possible to deploy
the final image without using the deploy wizard at all. To do this, you will need to make the root
filesystem and then move it to the location that you want to chroot to.

Make the root file system from the command line (or Makefile).

The tool is at:
/opt/Embedix/emb-bin/emb_mktimage.py

... and the usage is:
emb_mktimage.py --projectdir <project directory> [--nomerge]

By default the contents of the merge directory are put into the target image, but you can turn that
off by using the --nomerge option. So to build the filesystem for a project called intel, you need to
do this:
/opt/Embedix/emb-bin/emb_mktimage.py --projectdir
/home/chrisb/project/intel

 This will always build the target filesystem with the root located at:

<project dir>/tmp/rootfsdir

You can either chroot to the <project dir>/tmp/rootfsdir or tar that directory up and
move it to where you want.
tar czvf <project dir>/tmp/<new tar_ball.tgz> <project
dir>/tmp/rootfsdir

tar xzvf <project dir>/tmp/<new tar_ball.tgz> <your destination>

Note that this script doesn't update the kernel image in rootfsdir. That is, after the kernel is built,
it is placed in <project dir>/tmp where you will need to chmod it (755) and then copy it into the
filesystem each time the filesystem is rebuilt.

44 Embedix SDK Tools Addendum – October 2002 Copyright © 2002 Embedix, Inc.

Step 7: Creating a New BSP from the Project
Once you have customized your project to include new binaries, open source packages, kernels,
deploy wizards, or other software elements, you might want to create a new Board Support
Package. This board support package will be based on all of the elements within the project that
you’ve just created. Packaging your project into a BSP will allow all SDK users to select your
custom BSP, for use as the software baseline for an unlimited number of new projects/products.

Using export_bsp
The export_bsp tool is useful for creating a bsp that includes the changes/modifications that you
have made to the standard bsp distributed with the Embedix SDK. To use export_bsp, follow the
guidelines below:

• Create a project in Target Wizard using the standard bsp.

o Make any additions/modifications to the standard bsp. Make sure that your
additions/modifications are in the:

o ECD changes: <project dir>/config-data/ecds/local

o LBC changes: <project dir>/config-data/buildcontorl/local

o Package source changes: <project dir>/Packages/local

o Precompiled binaries: <project dir>/merge

o New saved state files (.sdf): <project dir>

o Deployment script changes (<board name>_emb_deploy): <project dir>/emb-bin

• Build and test the changes you have made. Once the changes have been tested and are
working the way that you want, use export_bsp to create a new bsp.

o cd /opt/Embedix/emb-bin/

o ./export_bsp --projectdir <project dir> --bspdir <new_bsp dir>

! For example: ./export_bsp --projectdir /home/user/project/x86 --bspdir
/home/user/export_bsp-test-2.4 would create the new
/home/user/export_bsp-test-2.4 bsp directory. This directory will be
populated with all of the changes you made to the standard bsp. NOTE:
the '-2.x' at the end of the <new_bsp dir> name is required by
export_bsp.

• cd <new_bsp dir>/config-data/buildcontrol

• edit the bsp_config and change the “%name” entry to reflect that it is your new bsp.

o For example, you could change the “%name” entry from ‘Generic x86 board’ to
‘My new x86 bsp’.

• cd /home/user

• Tar up the new bsp directory: tar czvf <new_bsp dir>.tgz <new_bsp dir>

• To use the newly created bsp simply untar the <new_bsp dir>.tgz in /opt/Embedix/bsp.

• Open Target Wizard and create a new project. Make sure to select ‘My new x86 bsp’
from the “Current Project Target Platform” list.

Note: If you have made changes to the GNU tools, these changes are not exported by the
export_bsp utility. They must be copied and installed separately.

Copyright © 2002 Embedix, Inc. Embedix SDK Tools Addendum – October 2002 45

Embedix Support
Support pages for Embedix SDK are maintained at: http://members.lineo.com

From these pages, you can access the following information:

• SDK Updates, Enhancements, and Bug Fixes

• SDK and Embedix Documentation

• Technical Information

• FAQs, How-Tos, etc.

• Linux Boot Loader Information

Additional support is available in accordance with the terms of individual support contracts.
Contact support@lineo.com for further information.

http://members.lineo.com/
mailto:support@lineo.com

46 Embedix SDK Tools Addendum – October 2002 Copyright © 2002 Embedix, Inc.

Notices
Disclaimer
Embedix, Inc. makes no representations or warranties with respect to the contents or use of this
manual, and specifically disclaims any express or implied warranties of merchantability or fitness
for any particular purpose. Embedix, Inc. reserves the right to revise this publication an to make
changes to its content, at any time, without obligation to notify any person or entity of such
revisions or changes.

Embedix, Inc. makes no representations or warranties with respect to any Embedix software, and
specifically disclaims any express or implied warranties of merchantability or fitness for any
particular purpose. Embedix, Inc. reserves the right to make changes to any an all parts of
Embedix software, at any time, without any obligation to notify any person or entity of such
changes.

Trademarks
Lineo, Embedix and the stylized Lineo logo are registered trademarks of Embedix, Inc.

Linux is a registered trademark of Linus Torvalds

MontaVista is a trademark of MontaVista Software. MontaVista neither supports nor has
participated in the development of this product.

TimeSys is a trademark of TimeSys, Inc. TimeSys neither supports nor has participated in the
development of this product.

Other product and company names mentioned in this document may be the trademarks or
registered trademarks of their respective owners.

Copyright Information
Copyright © 2002 Embedix, Inc. All rights reserved. No part of this publication may be
reproduced, photocopied, stored on a retrieval system, or transmitted without the express written
consent of the publisher.

Embedix, Inc.

588 West 400 South

Suite 150

Lindon, UT 84042

USA

http://www.lineo.com

